Supramolecular responsive microcarriers based on chitosan microspheres were prepared and applied for nonenzymatic cell detachment. Briefly, chitosan microspheres (CSMs) were first prepared by an emulsion crosslinking approach, the surface of which was then modified with β-cyclodextrin (β-CD) by chemical grafting. Subsequently, gelatin was attached onto the surface of the CSMs via the host-guest interaction between β-CD groups and aromatic residues in gelatin. The resultant microspheres were denoted CSM-g-CD-Gel. Due to their superior biocompatibility and gelatin niches, CSM-g-CD-Gel microspheres can be used as effective microcarriers for cell attachment and expansion. L-02, a human fetal hepatocyte line, was used to evaluate cell attachment and expansion with these microcarriers. After incubation for 48 h, the cells attached and expanded to cover the entire surface of microcarriers. Moreover, with the addition of adamantane (AD), cells can be detached from the microcarriers together with gelatin because of the competitive binding between β-CD and AD. Overall, these supramolecular responsive microcarriers could effectively support cell expansion and achieve nonenzymatic cell detachment and may be potentially reusable with a new cycle of gelatin attachment and detachment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574836PMC
http://dx.doi.org/10.3390/polym15194024DOI Listing

Publication Analysis

Top Keywords

supramolecular responsive
12
cell detachment
12
microcarriers cell
8
responsive microcarriers
8
chitosan microspheres
8
nonenzymatic cell
8
cell attachment
8
attachment expansion
8
microcarriers
7
cell
6

Similar Publications

Perylene diimide based fluorescent sensors for aqueous detection of perfluorooctane sulfonate (PFOS).

Anal Chim Acta

March 2025

Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA. Electronic address:

Background: Perfluorooctane sulfonate (PFOS), one of the most harmful members of the large group of per- and poly-fluoroalkyl substances (PFAS), is notorious for its environmental persistence, bioaccumulation, and toxic effects, raising serious environmental and health concerns. Developing rapid and sensitive methods to detect PFOS in water is critical for effective monitoring and protection against this hazardous chemical.

Results: In this study, we developed rapid and highly sensitive fluorometric sensors (PDI-2+ , PDI-6+ ) for detecting PFOS.

View Article and Find Full Text PDF

Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.

View Article and Find Full Text PDF

The combination of supramolecular self-assemblies and polymer science has resulted in the development of soft materials with diverse properties and applications. In particular, the coordination cages of predefined shape, size, and internal cavity can be utilized intelligently as promising building units for designing responsive and smart soft materials with dual porosity, contributing to the introduction of versatile host-guest chemistry into gels. In this review, we present the recent advancements in gels incorporating coordination cages into their networks, ranging from synthesis strategies to state-of-art applications.

View Article and Find Full Text PDF

A squaramide-based monomer, designed for topochemical azide-alkyne cycloaddition (TAAC) polymerization, crystallizes as two polymorphs, M1 and M2, both having crystal packing suitable for topochemical polymerization. The hydrogen-bonding between squaramide units  bias the molecular organization in both the polymorphs. 3D packing of H-bonded stacks of monomer lead to juxtaposition of  azide and alkyne units of adjacent molecules in a transition-state-like arrangement for their regiospecific cycloaddition reaction.

View Article and Find Full Text PDF

Light-Induced Transformation from Covalent to Supramolecular Polymer Networks.

ACS Macro Lett

January 2025

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Stimuli-responsive polymers have demonstrated significant potential in the development of smart materials due to their capacity to undergo targeted property changes in response to external physical or chemical stimuli. However, the scales of response in most existing stimuli-responsive polymer systems are mainly focused on three levels: functional units, chain conformations, or polymer topologies. Herein, we have developed a covalent polymer network (CPN) capable of converting into a supramolecular polymer network (SPN) within bulk materials directly at the scale of polymer network types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!