A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanocomposites Based on Polyethylene and Nickel Ferrite: Preparation, Characterization, and Properties. | LitMetric

Composite materials based on NiFeO nanoparticles and polyethylene matrix have been synthesized by thermal decomposition to expand the application area of high-pressure polyethylene by filling it with nanoscale particles. The synthesized compositions were obtained in the form of a dark gray powder and compressed for further study According to TEM, the average particle size in composites was 2, 3, and 4 nm in samples with a filling of 10%, 20% and 30%. The concentration dependences of the specific electrical resistivity ρ, dielectric permittivity ε, saturation magnetization M and the parameters of reflection and attenuation of microwave power of the obtained composites were investigated. The threshold for percolation in such materials is found to be within a concentration range of 20…30%. The electronic and atomic structure of composites was studied by methods of Mössbauer spectroscopy, X-ray diffraction and X-ray absorption spectroscopy. The closest atomic environment of nickel and iron in nanoparticles is close to that of crystalline NiFeO. The dependence of the nanoparticles size as well as the dependence of the number of tetrahedral or octahedral iron positions in nickel ferrite nanoparticles to their content in polyethylene matrix is established. It is shown that composite materials based on NiFeO nanoparticles and polyethylene matrix can be used as components of electromagnetic compatibility systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575271PMC
http://dx.doi.org/10.3390/polym15193988DOI Listing

Publication Analysis

Top Keywords

polyethylene matrix
12
nickel ferrite
8
composite materials
8
materials based
8
based nifeo
8
nifeo nanoparticles
8
nanoparticles polyethylene
8
polyethylene
5
nanoparticles
5
nanocomposites based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!