The ever-increasing demand for faster computing has led us to an era of heterogeneous integration, where interposers and package substrates have become essential components for further performance scaling. High-bandwidth connections are needed for faster communication between logic and memory dies. There are several limitations to current generation technologies, and dielectric buildup layers are a key part of addressing those issues. Although there are several polymer dielectrics available commercially, there are numerous challenges associated with incorporating them into interposers or package substrates. This article reviewed the properties of polymer dielectric materials currently available, their properties, and the challenges associated with their fabrication, electrical performance, mechanical reliability, and electrical reliability. The current state-of-the-art is discussed, and guidelines are provided for polymer dielectrics for the next-generation interposers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575375PMC
http://dx.doi.org/10.3390/polym15193895DOI Listing

Publication Analysis

Top Keywords

polymer dielectrics
12
interposers package
12
package substrates
12
challenges associated
8
review polymer
4
dielectrics redistribution
4
redistribution layers
4
interposers
4
layers interposers
4
substrates ever-increasing
4

Similar Publications

Bulk thermally conductive polyethylene as a thermal interface material.

Mater Horiz

January 2025

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.

As the demand for high-power-density microelectronics rises, overheating becomes the bottleneck that limits device performance. In particular, the heterogeneous integration architecture can magnify the importance of heat dissipation and necessitate electrical insulation between critical junctions to prevent dielectric breakdown. Consequently, there is an urgent need for thermal interface materials (TIMs) with high thermal conductivity and electrical insulation to address this challenge.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Effect of Temperature on Condensed State Structure and Conductivity Characteristics of Micron-Level Biaxially Oriented Polypropylene Films.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

Polymer-based dielectric films are increasingly demanded for devices under high electric fields used in new energy vehicles, photovoltaic grid connections, oil and gas exploration, and aerospace. However, leakage current is one of the significant factors limiting the improvement of the insulation performance. This paper tested the leakage current and condensed state structure characteristics of biaxially oriented polypropylene (BOPP) films and obtained the nonlinear characteristics of leakage current of BOPP films in the range of 40-440 V/μm and 40-110 °C.

View Article and Find Full Text PDF

High-Temperature Polymer Composite Dielectrics: Energy Storage Performance, Large-Scale Preparation, and Device Design.

Adv Mater

January 2025

School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China.

Film capacitors are widely used in advanced electrical and electronic systems. The temperature stability of polymer dielectrics plays a critical role in supporting their performance operation at elevated temperatures. For the last decade, the investigations for new polymer dielectrics with high energy storage performance at higher temperatures (>200 °C) have attracted much attention and numerous strategies have been employed.

View Article and Find Full Text PDF

A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!