A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating the Integration of Nonwoven Carbon Fibers for Mechanical Enhancement in Compression Molded Fiber-Reinforced Polymer Bipolar Plates. | LitMetric

The demand for polymer composite solutions in bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) has risen due to advantages over metal plates such as longer lifetime, weight reduction, corrosion resistance, flexible manufacturing, freedom of design, and cost-effectiveness. The challenge with polymer composites is achieving both sufficient electrical conductivity and mechanical stability with high filler content. A carbon fiber fleece as reinforcement in a graphite-filled polypropylene (PP) matrix was investigated for use as bipolar plate material with increased mechanical and sufficient conductive properties. Plates with a thickness of 1 mm containing four layers of fleece impregnated in the PP-graphite compound were produced in a compression molding process. Particle and fiber interactions were investigated via microscopy. The plates were characterized with respect to the electrical conductivity and mechanical stability. High electric conductivity was reached for fiber-reinforced and plain PP-graphite compound plates, with increased filler content leading to a higher conductivity. The contact resistance remained largely unaffected by surface etching as no polymeric skin layer formed during compression molding. Fiber-reinforced plates exhibit twice the tensile strength, a significantly higher tensile modulus, and an increased elongation at break, compared to PP filled only with graphite.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575332PMC
http://dx.doi.org/10.3390/polym15193891DOI Listing

Publication Analysis

Top Keywords

bipolar plates
8
electrical conductivity
8
conductivity mechanical
8
mechanical stability
8
stability high
8
filler content
8
pp-graphite compound
8
compression molding
8
plates
7
investigating integration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!