The study utilizes osteosarcoma hematoxylin and the Eosin-stained image dataset, which is unevenly dispersed, and it raises concerns about the potential impact on the overall performance and reliability of any analyses or models derived from the dataset. In this study, a deep-learning-based convolution neural network (CNN) and adapted heterogeneous ensemble-learning-based voting classifier have been proposed to classify osteosarcoma. The proposed methods can also resolve the issue and develop unbiased learning models by introducing an evenly distributed training dataset. Data augmentation is employed to boost the generalization abilities. Six different pre-trained CNN models, namely MobileNetV1, Mo-bileNetV2, ResNetV250, InceptionV2, EfficientNetV2B0, and NasNetMobile, are applied and evaluated in frozen and fine-tuned-based phases. In addition, a novel CNN model and adapted heterogeneous ensemble-learning-based voting classifier developed from the proposed CNN model, fine-tuned NasNetMobile model, and fine-tuned Efficient-NetV2B0 model are also introduced to classify osteosarcoma. The proposed CNN model outperforms other pre-trained models. The Kappa score obtained from the proposed CNN model is 93.09%. Notably, the proposed voting classifier attains the highest Kappa score of 96.50% and outperforms all other models. The findings of this study have practical implications in telemedicine, mobile healthcare systems, and as a supportive tool for medical professionals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572954 | PMC |
http://dx.doi.org/10.3390/diagnostics13193155 | DOI Listing |
World J Radiol
December 2024
Department of Ultrasound, First Affiliated Hospital, Hainan Medical University, Haikou 570102, Hainan Province, China.
In this editorial, a commentary on the article by Sudoł-Szopińska has been provided. Successful treatment of anal fistula (AF) relies on accurate diagnosis. Magnetic resonance imaging (MRI) and endoanal ultrasound (EUS) are important for the AF diagnosis.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059, Krakow, Poland.
In this study, a predictive maintenance (PdM) system focused on feature selection for the detection and classification of simulated defects in wind turbine blades has been developed. Traditional PdM systems often rely on numerous, broadly chosen diagnostic indicators derived from vibration data, yet many of these features offer little added value and may even degrade model performance. General feature selection methods might not be suitable for PdM solutions, as information regarding observed faults is often misinterpreted or lost.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320, Taiwan.
Background: Skin cancer is the most common cancer worldwide, with melanoma being the deadliest type, though it accounts for less than 5% of cases. Traditional skin cancer detection methods are effective but are often costly and time-consuming. Recent advances in artificial intelligence have improved skin cancer diagnosis by helping dermatologists identify suspicious lesions.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Dermatology, Faculty of Medicine, Firat University, 23200 Elazig, Turkey.
Psoriasis is a chronic, immune-mediated skin disease characterized by lifelong persistence and fluctuating symptoms. The clinical similarities among its subtypes and the diversity of symptoms present challenges in diagnosis. Early diagnosis plays a vital role in preventing the spread of lesions and improving patients' quality of life.
View Article and Find Full Text PDFPLoS One
January 2025
Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia.
Heart disease remains a leading cause of mortality and morbidity worldwide, necessitating the development of accurate and reliable predictive models to facilitate early detection and intervention. While state of the art work has focused on various machine learning approaches for predicting heart disease, but they could not able to achieve remarkable accuracy. In response to this need, we applied nine machine learning algorithms XGBoost, logistic regression, decision tree, random forest, k-nearest neighbors (KNN), support vector machine (SVM), gaussian naïve bayes (NB gaussian), adaptive boosting, and linear regression to predict heart disease based on a range of physiological indicators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!