Ensemble Federated Learning Approach for Diagnostics of Multi-Order Lung Cancer.

Diagnostics (Basel)

Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-Be University), Bangalore 560066, India.

Published: September 2023

The early detection and classification of lung cancer is crucial for improving a patient's outcome. However, the traditional classification methods are based on single machine learning models. Hence, this is limited by the availability and quality of data at the centralized computing server. In this paper, we propose an ensemble Federated Learning-based approach for multi-order lung cancer classification. This approach combines multiple machine learning models trained on different datasets allowing for improvising accuracy and generalization. Moreover, the Federated Learning approach enables the use of distributed data while ensuring data privacy and security. We evaluate the approach on a Kaggle cancer dataset and compare the results with traditional machine learning models. The results demonstrate an accuracy of 89.63% with lung cancer classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572651PMC
http://dx.doi.org/10.3390/diagnostics13193053DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
machine learning
12
learning models
12
ensemble federated
8
federated learning
8
learning approach
8
multi-order lung
8
cancer classification
8
learning
5
approach
5

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.

View Article and Find Full Text PDF

The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!