AI Article Synopsis

  • Agri-food residues are increasingly recognized as sustainable materials rather than waste, aligning with zero waste and circular economy principles.
  • These residues can be transformed into biochar and hydrochar, which serve as effective adsorbents for wastewater treatment and offer alternatives for energy generation.
  • This approach promotes environmental sustainability and resource efficiency, presenting an exciting opportunity for various industrial applications.

Article Abstract

Agri-food residues or by-products have increased their contribution to the global tally of unsustainably generated waste. These residues, characterized by their inherent physicochemical properties and rich in lignocellulosic composition, are progressively being recognized as valuable products that align with the principles of zero waste and circular economy advocated for by different government entities. Consequently, they are utilized as raw materials in other industrial sectors, such as the notable case of environmental remediation. This review highlights the substantial potential of thermochemical valorized agri-food residues, transformed into biochar and hydrochar, as versatile adsorbents in wastewater treatment and as promising alternatives in various environmental and energy-related applications. These materials, with their enhanced properties achieved through tailored engineering techniques, offer competent solutions with cost-effective and satisfactory results in applications in various environmental contexts such as removing pollutants from wastewater or green energy generation. This sustainable approach not only addresses environmental concerns but also paves the way for a more eco-friendly and resource-efficient future, making it an exciting prospect for diverse applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572264PMC
http://dx.doi.org/10.3390/foods12193646DOI Listing

Publication Analysis

Top Keywords

agri-food residues
12
environmental
5
waste resource
4
resource valorization
4
valorization lignocellulosic
4
lignocellulosic agri-food
4
residues
4
residues engineered
4
engineered hydrochar
4
hydrochar biochar
4

Similar Publications

The PA-X host shutoff site 100 V exerts a contrary effect on viral fitness of the highly pathogenic H7N9 influenza A virus in mice and chickens.

Virulence

December 2025

Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.

Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.

View Article and Find Full Text PDF

Sulfhydrylation of chlorothalonil in pak choi from cultivation to sample analysis and exposure risk assessment.

J Hazard Mater

December 2024

Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China. Electronic address:

The rapid sulfhydrylation of chlorothalonil (CHT) in sulfur-rich vegetable matrices was observed in our previous study. However, the formation pathway, residual behavior, and toxicity of sulfhydrylated CHT remain unclear. In this study, we reveal that 4-sulfhydryl chlorothalonil (4-SH-CHT) can be formed by the reaction of CHT with HS species.

View Article and Find Full Text PDF

In silico based re-engineering of a computationally designed biosensor with altered signalling mode and improved dynamic range.

Arch Biochem Biophys

December 2024

Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada. Electronic address:

A current challenge in the rational design of biomolecular sensors is the ability to custom design binding affinities and detection mode in silico. To this end, we re-engineered a previously reported computationally-designed fluorescent maltooligosaccharide (MOS)-detecting biosensor to both alter its ligand-binding affinity and to analyse the underlying sensing mechanism. The dynamic range of the biosensor was expanded through the computer aided introduction of a series of amino acid substitutions in the starting protein scaffold (MalX from Streptococcus pneumoniae), which generated a biosensor set with binding affinities spanning over five orders of magnitude.

View Article and Find Full Text PDF

Leveraging biofuel derived from biomass stands as a pivotal strategy in reducing CO emissions and mitigating the greenhouse effect. Biomass serves as a clean, renewable energy source, offering inherent benefits. However, despite its advantages, biomass encounters obstacles hindering its widespread industrial applications, including its relatively low calorific value, limited grindability, high water content, and susceptibility to corrosion.

View Article and Find Full Text PDF

Producing agri-food derived composts from coffee husk as primary feedstock at different temperature conditions.

J Environ Manage

November 2024

Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131, Ancona, Italy; Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, 00184, Rome, Italy.

There is a great global concern about agricultural wastes from food and feed crop processing that have significant environmental impacts. Composting is the most environmentally friendly, cost-effective, and efficient processes that can solve the problems of accumulation and toxicity of agricultural waste. The aim of this study is the detoxification of coffee husk by composting at two temperature conditions ("warm" and "cold").

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!