L. Seed and Attenuate Oxidative Stress Induced by Hydrogen Peroxide in SH-SY5Y Cells.

Foods

Department of Food Science and Nutrition and Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea.

Published: September 2023

Oxidative stress is closely associated with the pathology of neurodegenerative diseases. The seeds of L. (CTS) and (TC) are reported as herbal medicines for neuroprotection. This study investigated the protective effect of CTS, TC, and their combination against oxidative stress induced by HO in SH-SY5Y cells. The CTS and TC combination dose-dependently increased DPPH and ·OH radical scavenging activities compared with non-combination. The combination showed a higher increased cell survival rate in HO-stimulated SH-SY5Y cells than CTS or TC. Moreover, CTS, TC, and their combination-treated cells reduced LDH release and apoptotic cells. CTS, TC, and their combination also inhibited NO and ROS generation. Further, the combination of up-regulated antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and Bcl-2 protein expressions and down-regulated Bax expression. These findings suggest that the combination of CTS and TC may be beneficial to prevent and treat oxidative stress-mediated neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572336PMC
http://dx.doi.org/10.3390/foods12193617DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
sh-sy5y cells
12
cts combination
12
cells cts
12
stress induced
8
neurodegenerative diseases
8
cts
7
combination
6
cells
5
seed attenuate
4

Similar Publications

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Research has shown various hydrolyzed proteins possessed beneficial physiological functions; however, the mechanism of how hydrolysates influence metabolism is unclear. Therefore, the current study aimed to examine the effects of different sources of protein hydrolysates, being the main dietary protein source in extruded diets, on metabolism in healthy adult dogs. Three complete and balanced extruded canine diets were formulated: control chicken meal diet (CONd), chicken liver and heart hydrolysate diet (CLHd), mechanically separated chicken hydrolysate diet (CHd).

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!