Evaluation of the Effect of Perfluorohexane Sulfonate on the Proliferation of Human Liver Cells.

Int J Environ Res Public Health

Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea.

Published: September 2023

Perfluorohexane sulfonate (PFHxS) is a widely detected replacement for legacy long-chain perfluoroalkyl substances (PFAS) in the environment and human blood samples. Its potential toxicity led to its recent classification as a globally regulated persistent organic pollutant. Although animal studies have shown a positive association between PFHxS levels and hepatic steatosis and hepatocellular hypertrophy, the link with liver toxicity, including end-stage liver cancer, remains inconclusive. In this study, we examined the effects of PFHxS on the proliferation of Hep3B (human hepatocellular carcinoma) and SK-Hep1 (human liver sinusoidal endothelial cells). Cells were exposed to different PFHxS concentrations for 24-48 h to assess viability and 12-14 days to measure colony formation. The viability of both cell lines increased at PFHxS concentrations <200 μM, decreased at >400 μM, and was highest at 50 μM. Colony formation increased at <300 μM and decreased at 500 μM PFHxS. Consistent with the effect on cell proliferation, PFHxS increased the expression of proliferating cell nuclear antigen (PCNA) and cell-cycle molecules (CDK2, CDK4, cyclin E, and cyclin D1). In summary, PFHxS exhibited a biphasic effect on liver cell proliferation, promoting survival and proliferation at lower concentrations and being cytotoxic at higher concentrations. This suggests that PFHxS, especially at lower concentrations, might be associated with HCC development and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572997PMC
http://dx.doi.org/10.3390/ijerph20196868DOI Listing

Publication Analysis

Top Keywords

perfluorohexane sulfonate
8
human liver
8
pfhxs concentrations
8
colony formation
8
pfhxs
5
evaluation perfluorohexane
4
sulfonate proliferation
4
human
4
proliferation human
4
liver
4

Similar Publications

Construction of the cancer patients' database based on the US National Health and Nutrition Examination Survey (NHANES) datasets for cancer epidemiology research.

BMC Med Res Methodol

January 2025

Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1, Singil-ro, Yeongdeungpo-gu, Seoul, 07441, South Korea.

Background: The US National Health and Nutrition Examination Survey (NHANES) dataset does not include a specific question or laboratory test to confirm a history of cancer diagnosis. However, if straightforward variables for cancer history are introduced, US NHANES could be effectively utilized in future cancer epidemiology studies. To address this gap, the authors developed a cancer patient database from the US NHANES datasets by employing multiple R programming codes.

View Article and Find Full Text PDF

Perfluoroalkyl chemicals are one of the most stable substances in industry and have become ubiquitous contaminants owing to their persistence in the environment. This study enrolled 1,953 participants aged ≥40 years old using data from the National Health and Nutrition Examination Survey (NHANES). We selected four perfluoroalkyl chemicals with a detection frequency of more than 80%, including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS).

View Article and Find Full Text PDF

Per- and Polyfluoroalkyl Substances (PFAS) Exposure in the U.S. Population: NHANES 1999-March 2020.

Environ Res

January 2025

Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA. Electronic address:

Per- and polyfluoroalkyl substances (PFAS), also known as "forever chemicals" because of their persistence in the environment, have been used in many commercial applications since the 1940s. Of late, the detection of PFAS in drinking water throughout the United States has raised public and scientific concerns. To understand PFAS exposure trends in the general U.

View Article and Find Full Text PDF

Perfluorohexane Sulfonic Acid Disrupts the Immune Microenvironment for Spermatogenesis by Damaging the Structure of the Blood-Testis Barrier in Mice.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05).

View Article and Find Full Text PDF

Plasma, milk and tissue samples were collected from 30 dairy cattle (0.4 to 8.9 years of age) with lifetime exposures to perfluoroalkyl substances (PFAS) removed from a PFAS-contaminated farm and provided PFAS-free feed and water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!