Unlabelled: PMMA (Polymethylmethacrylate) is the material of choice to fabricate denture bases. Recently, with the introduction of CAD-CAM and 3D printers in dentistry, new materials have been proposed for complete denture manufacturing.

Aim: This study compared the flexural strength of different resins fabricated using different technologies (conventional, CAD-CAM-milled, and 3D-printed) and polymerization techniques.

Methods: A total of 11 different resins were tested: six PMMA conventional (Acrypol R, Acrypol LL, Acrypol HI, Acrypol Fast, Acryself and Acryslef P), two milled obtained from UDMA PMMA disks (Ivotion disk and Aadva disk, control groups), two 3D-printed PMMA resins (NextDent Denture 3D+, and SprintRayEU Denture Base), and one 3D-printed composite resin (GC Temp Print). Flexural strength was measured using a universal testing machine. One-way ANOVA and Bonferroni post hoc tests were performed; the -value was set at 0.05 to consider statistically significant differences among the groups. Spearman test was used to evaluate the correlation between polymerization technique and the flexural strength of 3D-printed resins.

Results: CAD-CAM-milled specimens showed the highest flexural strength (107.87 MPa for UDMA) followed by 3D-printed composite resins (102.96 MPa). Furthermore, 3D-printed resins polymerized for 40 min with the BB cure unit showed no statistically significant differences with conventional resin groups. Moreover, in all the 3D-printed specimens, a high correlation between polymerization technique and flexural strength was found.

Conclusions: In terms of flexural strength, the polymerization technique is a determinant for both acrylic and composite resins. Temp Print can be a potential alternative to fabricating removable dentures and showed promising results when used in combination with pink color resin powder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573664PMC
http://dx.doi.org/10.3390/ma16196559DOI Listing

Publication Analysis

Top Keywords

flexural strength
28
acrypol acrypol
12
polymerization technique
12
complete denture
8
groups 3d-printed
8
3d-printed composite
8
temp print
8
statistically differences
8
correlation polymerization
8
technique flexural
8

Similar Publications

Fiber-reinforced polymer composites are subjected to harsh environmental conditions over the course of their designed lifespan. Studying the aging process of fiber-reinforced polymer composites exposed to boiling water is critical for improving their durability. This study uses a hand lay-up technique to fabricate composites from glass fiber, bamboo fiber, nanoclay, and epoxy.

View Article and Find Full Text PDF

This study aimed at assessing the mechanical properties and degradation of commercial bioactive materials. The bioactive materials (Activa Bioactive Restorative, Beautifil Flow Plus F00, F03, Predicta Bulk Bioactive) and composite resin Filtek Supreme Flow were submitted to flexural and diametral tensile strength tests (FS, DTS), modulus of elasticity (ME) evaluation, and analysis of aging in 70% ethanol and saliva on their hardness and sorption. The results for DTS ranged from 33.

View Article and Find Full Text PDF

Underwater Superoleophobic and Transparent Films with Mechanical Robustness and High Durability in Harsh Environments.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.

View Article and Find Full Text PDF

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!