The rapid development of smart devices and electronic products puts forward higher requirements for power supply components. As a promising solution, hybrid energy harvesters that are based on a triboelectric nanogenerator (HEHTNG) show advantages of both high energy harvesting efficiency and multifunctionality. Aiming to systematically elaborate the latest research progress of a HEHTNG, this review starts by introducing its working principle with a focus on the combination of triboelectric nanogenerators with various other energy harvesters, such as piezoelectric nanogenerators, thermoelectric/pyroelectric nanogenerators, solar cells, and electromagnetic nanogenerators. While the performance improvement and integration strategies of HEHTNG toward environmental energy harvesting are emphasized, the latest applications of HEHTNGs as multifunctional sensors in human health detection are also illustrated. Finally, we discuss the main challenges and prospects of HEHTNGs, hoping that this work can provide a clear direction for the future development of intelligent energy harvesting systems for the Internet of Things.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573783 | PMC |
http://dx.doi.org/10.3390/ma16196405 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
Heteropolar two-dimensional materials, including hexagonal boron nitride (hBN), are promising candidates for seawater desalination and osmotic power harvesting, but previous simulation studies have considered bare, unterminated nanopores in molecular dynamics (MD) simulations. There is presently a lack of force fields to describe functionalized nanoporous hBN in aqueous media. To address this gap, we conduct density functional theory (DFT)-based ab initio MD simulations of hBN nanopores surrounded by water molecules.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
LPHE-MS, Faculty of Science, Mohammed V University in Rabat, Morocco.
This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.
View Article and Find Full Text PDFiScience
January 2025
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA.
The storage and generation of electrical energy at the mm-scale is a core roadblock to realizing many untethered miniature systems, including industrial, environmental, and medically implanted sensors. We describe the potential to address the sensor energy requirement in a two-step process by first converting alpha radiation into light, which can then be translated into electrical power through a photovoltaic harvester circuit protected by a clear sealant. Different phosphorescent and scintillating materials were mixed with the alpha-emitter Th-227, and the conversion efficiency of europium-doped yttrium oxide was the highest at around 2%.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, P.R. China.
Metamaterials hold great promise for application in the field of perfect absorbers due to their remarkable ability to manipulate electromagnetic waves. In this work, a full-spectrum ultra-wideband solar absorber with a multilayer metal-dielectric stacked structure is designed. Our absorber is simple and easy to manufacture, with Ti serving as the substrate, overlaid with SiN spacer layers and four pairs of Ti-SiN ring columns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!