Two-dimensional (2D) materials and phenomena attract huge attention in modern science. Herein, we introduce a family of layered materials inspired by the minerals valleriite and tochilinite, which are composed of alternating "incompatible", and often incommensurate, quasi-atomic sheets of transition metal chalcogenide (sulfides and selenides of Fe, Fe-Cu and other metals) and hydroxide of Mg, Al, Fe, Li, etc., stacked via electrostatic interaction rather than van der Waals forces. We survey the data available on the composition and structure of the layered minerals, laboratory syntheses of such materials and the effect of reaction conditions on the phase purity, morphology and composition of the products. The spectroscopic results (Mössbauer, X-ray photoelectron, X-ray absorption, Raman, UV-vis, etc.), physical (electron, magnetic, optical and some others) characteristics, a specificity of thermal behavior of the materials are discussed. The family of superconductors (FeSe)·(Li,Fe)(OH) having a similar layered structure is briefly considered too. Finally, promising research directions and applications of the valleriite-type substances as a new class of prospective multifunctional 2D materials are outlined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573794PMC
http://dx.doi.org/10.3390/ma16196381DOI Listing

Publication Analysis

Top Keywords

materials
6
metal chalcogenide-hydroxide
4
chalcogenide-hydroxide hybrids
4
hybrids emerging
4
emerging family
4
family two-dimensional
4
two-dimensional heterolayered
4
heterolayered materials
4
materials early
4
early review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!