Evaluation of the Effect of Antibacterial Peptides on Model Monolayers.

Int J Mol Sci

Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.

Published: October 2023

The aim of the study was to assess the effect of the synthesized antibacterial peptides: P2 (WKWK)-KWKWK-NH, P4 (C12)-KKKK-NH, P5 (KWK)-KWWW-NH, and P6 (KK)-KWWW-NH on the physicochemical properties of a model biological membrane made of azolectin or lecithin. The Langmuir Wilhelmy method was used for the experiments. Based on the compressibility factor, it was determined that the monolayers formed of azolectin and peptides in the aqueous subphase are in the condensed liquid phase. At the boundary between the condensed and expanded liquid phases, there was a monolayer made of lecithin and P4, P5 or P6 in the aqueous subphase. In turn, the film consisting of lecithin alone (37.7 mN/m) and lecithin and P2 (42.6 mN/m) in the water subphase was in the expanded liquid phase. All peptides change, to varying degrees, the organization and packing of molecules in the monolayer, both those made of azolectin and of lecithin. The test results can be used for further research to design a system with the expected properties for specific organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573695PMC
http://dx.doi.org/10.3390/ijms241914861DOI Listing

Publication Analysis

Top Keywords

antibacterial peptides
8
azolectin lecithin
8
aqueous subphase
8
liquid phase
8
expanded liquid
8
lecithin
5
evaluation antibacterial
4
peptides
4
peptides model
4
model monolayers
4

Similar Publications

Unlabelled: Despite recent advances, the regulation of anticancer and antimicrobial bioactive compound (AABC) production by leukocytes remains poorly understood. Here, we demonstrate that inactivation of the DNA- and RNA-based Teazeled receptors of the Universal Receptive System in human leukocytes generated so called "Leukocyte-Tells," which showed enhanced AABC production. Comprehensive analysis of the AABCs produced by Leukocyte-Tells based on LC/MS identified 707 unique or differentially produced peptide or non-peptide metabolites.

View Article and Find Full Text PDF

Bottom-up reconstitution design of a biomimetic atelocollagen microfibril for enhancing hemostatic, antibacterial, and biodegradable benefits.

J Mater Chem B

January 2025

Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, P. R. China.

Powdered collagen is emerging as a promising topical hemostat owing to its adaptability to various wounds, active hemostatic abilities, and biosafety. The reproduction of a bionic structure similar to natural collagen is crucial for effective hemostasis and bioactivity. Additional factors relevant to clinical application include antimicrobial properties, minimal immune response, and straightforward preparation.

View Article and Find Full Text PDF

An Antibacterial Hemostasis Sponge of Gelatin/ε-Poly-L-Lysine Composite.

J Biomed Mater Res B Appl Biomater

January 2025

Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P. R. China.

Massive bleeding and bacterial infection of wounds may be life-threatening or even lead to death. Nowadays, gelatin-based hemostatic sponges have been widely used, but gelatin is not antibacterial and has poor structural stability. In this study, we mixed an antibacterial polypeptide, ε-poly-L-lysine (EPL), into gelatin.

View Article and Find Full Text PDF

The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects.

View Article and Find Full Text PDF

Unlabelled: We have developed novel and sustainable homogeneous catalysts employing Glutamic acid (Glu) as a biodegradable and eco-friendly organocatalyst for the synthesis of -(4-oxo-2-phenyl-1,2-dihydroquinazolin-3(4)-yl)isonicotinamide derivatives (-) via multicomponent reactions (MCRs) of isatoic anhydride, isoniazid and heteroaromatic/aromatic aldehyde in ethanol on oil bath stirring at 60 °C. Selected final product homogeneity was examined by various spectroscopic techniques such as C-, H- NMR, FT-IR and LC-MS. For the first time, herein investigated electrochemical behavior of selected derivatives (-) using cyclic voltammetry method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!