Alzheimer disease (AD) is a widespread neurodegenerative disease characterized by the accumulation of oligomeric toxic forms of β-amyloid (Aβ1-42) and dysfunction of the cholinergic system in the different brain regions. However, the exact mechanisms of AD pathogenesis and the role of the nicotinic acetylcholine receptors (nAChRs) in the disease progression remain unclear. Here, we revealed a decreased expression of a number of the Ly6/uPAR proteins targeting nAChRs in the cerebellum of 2xTg-AD mice (model of early AD) in comparison with non-transgenic mice both at mRNA and protein levels. We showed that co-localization of one of them, - neuromodulator Lynx1, with α7-nAChR was diminished in the vicinity of cerebellar astrocytes of 2xTg-AD mice, while Aβ1-42 co-localization with this receptor present was increased. Moreover, the expression of anti-inflammatory transcription factor KLF4 regulating transcription of the genes was decreased in the cerebellum of 2xTg-AD mice, while expression of inflammatory cytokine TNF-α was increased. Based on these data together with observed astrocyte degeneration in the cerebellum of 2xTg-AD mice, we suggest the mechanism by which expression of the Ly6/uPAR proteins upon Aβ pathology results in dysregulation of the cholinergic system and particularly of α7-nAChR function in the cerebellum. This leads to enhanced neuroinflammation and cerebellar astrocyte degeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573428 | PMC |
http://dx.doi.org/10.3390/ijms241914852 | DOI Listing |
Int J Mol Sci
October 2023
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia.
Alzheimer disease (AD) is a widespread neurodegenerative disease characterized by the accumulation of oligomeric toxic forms of β-amyloid (Aβ1-42) and dysfunction of the cholinergic system in the different brain regions. However, the exact mechanisms of AD pathogenesis and the role of the nicotinic acetylcholine receptors (nAChRs) in the disease progression remain unclear. Here, we revealed a decreased expression of a number of the Ly6/uPAR proteins targeting nAChRs in the cerebellum of 2xTg-AD mice (model of early AD) in comparison with non-transgenic mice both at mRNA and protein levels.
View Article and Find Full Text PDFDokl Biochem Biophys
August 2023
Interdisciplinary Scientific and Educational School "Molecular Technologies of Living Systems and Synthetic Biology", Faculty of Biology, Moscow State University, Moscow, Russia.
Alzheimer's disease is a rapidly progressive neurodegenerative disease, the development of which is associated with the accumulation of β-amyloid oligomers, dysfunction of the α7-nAChR nicotinic acetylcholine receptor, and activation of inflammation. Previously, we showed that the neuromodulator Lynx1, which belongs to the Ly6/uPAR family, competes with β-amyloid(1-42) for binding to α7-nAChR. In this work, we studied the expression and localization of Ly6/uPAR family proteins in the hippocampus of 2xTg-AD transgenic mice that model AD and demonstrate increased amyloidosis in the brain.
View Article and Find Full Text PDFAdv Mater
July 2021
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Abnormal protein aggregations are essential pathological features of neurodegenerative diseases. Eliminating while inhibiting the regeneration of these protein aggregates is considered an effective treatment strategy. Herein, the CRISPR/Cas9 gene-editing tool is employed to inhibit the regeneration of disease-related proteins, while chemical drugs are applied to eliminate the proteins that are produced.
View Article and Find Full Text PDFCells
April 2021
Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 212241, USA.
Circulating neuronal extracellular vesicles (NEVs) of Alzheimer's disease (AD) patients show high Tau and β-amyloid (Aβ) levels, whereas their astrocytic EVs (AEVs) contain high complement levels. To validate EV proteins as AD biomarkers, we immunocaptured NEVs and AEVs from plasma collected from fifteen wild type (WT), four 2xTg-AD, nine 5xFAD, and fifteen 3xTg-AD mice and assessed biomarker relationships with brain tissue levels. NEVs from 3xTg-AD mice had higher total Tau ( = 0.
View Article and Find Full Text PDFNeurosci Lett
January 2021
School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, PR China. Electronic address:
Amyloid-β (Aβ) is the core component of amyloid plaques of Alzheimer's disease (AD). Recent evidence has confirmed that Aβ triggers neurodegeneration by dramatically suppressing vitamin D receptor (VDR) expression. Thus far, the onset mechanisms and means of preventing AD are largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!