To Break or Not to Break: The Role of TOP2B in Transcription.

Int J Mol Sci

Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.

Published: September 2023

Transcription and its regulation pose challenges related to DNA torsion and supercoiling of the DNA template. RNA polymerase tracking the helical groove of the DNA introduces positive helical torsion and supercoiling upstream and negative torsion and supercoiling behind its direction of travel. This can inhibit transcriptional elongation and other processes essential to transcription. In addition, chromatin remodeling associated with gene activation can generate or be hindered by excess DNA torsional stress in gene regulatory regions. These topological challenges are solved by DNA topoisomerases via a strand-passage reaction which involves transiently breaking and re-joining of one (type I topoisomerases) or both (type II topoisomerases) strands of the phosphodiester backbone. This review will focus on one of the two mammalian type II DNA topoisomerase enzymes, DNA topoisomerase II beta (TOP2B), that have been implicated in correct execution of developmental transcriptional programs and in signal-induced transcription, including transcriptional activation by nuclear hormone ligands. Surprisingly, several lines of evidence indicate that TOP2B-mediated protein-free DNA double-strand breaks are involved in signal-induced transcription. We discuss the possible significance and origins of these DSBs along with a network of protein interaction data supporting a variety of roles for TOP2B in transcriptional regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573011PMC
http://dx.doi.org/10.3390/ijms241914806DOI Listing

Publication Analysis

Top Keywords

torsion supercoiling
12
dna
8
type topoisomerases
8
dna topoisomerase
8
signal-induced transcription
8
transcription
5
break break
4
break role
4
role top2b
4
top2b transcription
4

Similar Publications

Humidity-responsive fiber actuators assembled from cellulose nanofibrils.

Carbohydr Polym

January 2025

Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 106 91, Sweden. Electronic address:

Fiber actuators, particularly valuable in soft robotics and environmental sensing, are at the forefront of "smart" materials and materials innovation. In this realm, torsional and tensile biofiber actuators, notable for their cost-effectiveness and biodegradability, mark a critical gap in the development of next-generation functional systems and devices. To address this gap, this study showcased moisture-responsive fiber actuators made from cellulose nanofibrils (CNFs).

View Article and Find Full Text PDF

DNA transactions introduce torsional constraints that pose an inherent risk to genome integrity. While topoisomerase 1 (TOP1) activity is essential for removing DNA supercoiling, aberrant stabilization of TOP1:DNA cleavage complexes (TOP1ccs) can result in cytotoxic DNA lesions. What protects genomic hot spots of topological stress from aberrant TOP1 activity remains unknown.

View Article and Find Full Text PDF

Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils.

Mol Cell

November 2024

Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece. Electronic address:

Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells.

View Article and Find Full Text PDF

Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo.

View Article and Find Full Text PDF

Transcription through chromatin under torsion represents a fundamental problem in biology. Pol II must overcome nucleosome obstacles and, because of the DNA helical structure, must also rotate relative to the DNA, generating torsional stress. However, there is a limited understanding of how Pol II transcribes through nucleosomes while supercoiling DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!