Functional TRPA1 Channels Regulate CD56CD16 NK Cell Cytotoxicity against Tumor Cells.

Int J Mol Sci

National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy.

Published: September 2023

Transient receptor potential ankyrin 1 (TRPA1) channels are expressed on the surface of different cell types, including immune cells. However, TRPA1's role in the context of innate and adaptive immune responses has not been fully elucidated so far. In this study, we aimed at investigating the expression and function of TRPA1 channels on NK cells. Among NK cells, TRPA1 was highly expressed by the CD56CD16 subpopulation, but not by CD56CD16 cells, as detected by FACS. TRPA1 activation with the potent ligand allyl isothiocyanate (AITC) induces intracellular calcium flux in CD56CD16 cells, which was prevented by the TRPA1 antagonist HC-030031. AITC treatment increased the membrane around NKp44 and strongly decreased CD16 and CD8 expression, while CD158a, CD159a, NKG2d, NKp46 were substantially unaffected. Importantly, AITC increased the granzyme production and CD107 expression and increased NK cell-mediated cytotoxicity towards the K562 cell line and two different melanoma cell lines. In parallel, TRPA1 activation also plays regulatory roles by affecting the survival of NK cells to limit uncontrolled and prolonged NK cell-mediated cytotoxicity. Our results indicate that the activation of TRPA1 is an important regulatory signal for NK cells, and agonists of TRPA1 could be used to strengthen the tumor response of the immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572725PMC
http://dx.doi.org/10.3390/ijms241914736DOI Listing

Publication Analysis

Top Keywords

trpa1 channels
12
cells
8
trpa1
8
cd56cd16 cells
8
trpa1 activation
8
cell-mediated cytotoxicity
8
functional trpa1
4
channels regulate
4
cd56cd16
4
regulate cd56cd16
4

Similar Publications

The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.

View Article and Find Full Text PDF

Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na and TRP Channels.

Biomolecules

December 2024

Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.

Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.

View Article and Find Full Text PDF

Engineering spatially-confined conduits to tune nerve self-organization and allodynic responses via YAP-mediated mechanotransduction.

Nat Commun

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Chronic allodynia stemming from peripheral stump neuromas can persist for extended periods, significantly compromising patients' quality of life. Conventional managements for nerve stumps have demonstrated limited effectiveness in ensuring their orderly termination. In this study, we present a spatially confined conduit strategy, designed to enhance the self-organization of regenerating nerves after truncation.

View Article and Find Full Text PDF

Optimization and Calibration of 384-well Kinetic Ca Mobilization Assays for the Human Transient Receptor Potential Cation Channels TRPM8, TRPV1, and TRPA1.

SLAS Discov

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA. Electronic address:

Development, optimization, and calibration of human transient receptor potential (TRP) channel Ca mobilization assays for TRPM8, TRPV1, and TRPA1 are described. Heterologous expression of hTRPM8 in HEK293T cells was required for anti-TRPM8 antibody staining and TRPM8 agonist induced Ca mobilization signals which were both used to optimize transfection efficiency. FLIPR Calcium 6 dye concentration, loading time, and TRPM8 transfected cell seeding density were optimized and a DMSO tolerance of ≤0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!