Fluorescence lifetime measurements of blood or plasma offer valuable insights into the microenvironment and molecular interactions of fluorophores, particularly concerning albumin. Neutrophil- and hypoxia-induced oxidative stress in COVID-19 pneumonia patients leads to hyperinflammation, various oxidative modifications of blood proteins, and potential alterations in the fluorescence lifetime of tryptophan-containing proteins, especially albumin. The objective of this study was to investigate the efficacy of time-resolved fluorescence spectroscopy of blood and plasma as a prompt diagnostic tool for the early diagnosis and severity assessment of COVID-19-associated pneumonia. This study examined a cohort of sixty COVID-19 patients with respiratory symptoms. To investigate whether oxidative stress is the underlying cause of the change in fluorescence lifetime, human serum albumin was treated with chloramine T. The time-resolved spectrometer Life Spec II (Edinburgh Instruments Ltd., Livingston, UK), equipped with a sub-nanosecond pulsed 280 nm diode, was used to measure the fluorescence lifetime of blood and plasma. The findings revealed a significant reduction in the fluorescence lifetime of blood (diluted 200 times) and plasma (diluted 20 times) at 360 nm in COVID-19 pneumonia patients compared with their respective values recorded six months post-infection and those of healthy individuals. Significant negative correlations were observed between the mean fluorescence lifetime of blood and plasma at 360 nm and several severity biomarkers and advanced oxidation protein products, while a positive correlation was found with albumin and the albumin-globulin ratio. The time-resolved fluorescence spectroscopy method demonstrates the potential to be used as a preliminary screening technique for identifying patients who are at risk of developing severe complications. Furthermore, the small amount of blood required for the measurements has the potential to enable a rapid fingerstick blood test.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572581 | PMC |
http://dx.doi.org/10.3390/ijms241914703 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, 1050 Brussels, Belgium.
Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry and Chemical Engineering, 135 West Xingang Road, 510275, Guangzhou, CHINA.
Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!