Ageing is inevitable in all living organisms and is associated with physical deterioration, disease and eventually death. Dysbiosis, which is the alteration of the gut microbiome, occurs in individuals during ageing, and plenty of studies support that gut dysbiosis is responsible for the progression of different types of age-related diseases. The economic burden of age-linked health issues increases as ageing populations increase. Hence, an improvement in disease prevention or therapeutic approaches is urgently required. In recent years, vitamin E has garnered significant attention as a promising therapeutic approach for delaying the ageing process and potentially impeding the development of age-related disease. Nevertheless, more research is still required to understand how vitamin E affects the gut microbiome and how it relates to age-related diseases. Therefore, we gathered and summarized recent papers in this review that addressed the impact of the gut microbiome on age-related disease, the effect of vitamin E on age-related disease along with the role of vitamin E on the gut microbiome and the relationship with age-related diseases which are caused by ageing. Based on the studies reported, different bacteria brought on various age-related diseases with either increased or decreased relative abundances. Some studies have also reported the positive effects of vitamin E on the gut microbiome as beneficial bacteria and metabolites increase with vitamin E supplementation. This demonstrates how vitamin E is vital as it affects the gut microbiome positively to delay ageing and the progression of age-related diseases. The findings discussed in this review will provide a simplified yet deeper understanding for researchers studying ageing, the gut microbiome and age-related diseases, allowing them to develop new preclinical and clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572321 | PMC |
http://dx.doi.org/10.3390/ijms241914667 | DOI Listing |
Can J Infect Dis Med Microbiol
December 2024
School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Damage to the intestinal mucosal barrier and dysbiosis of the gut microbiota are critical factors in HIV progression, reciprocally influencing each other. Besides bacteria, the fungal microbiota, a significant component of the gut, plays a pivotal role in this dysregulation. This study aims to investigate changes in the gut mucosal barrier and mycobiota during the initial stages of HIV infection, focusing on the involvement of intestinal fungi and their secretions in mucosal damage.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Immune checkpoint inhibitors (ICIs) have transformed oncological treatment by modulating immune responses against tumors. However, their efficacy is subject to inter-patient variability and is associated with immune-related adverse events (irAEs). The human gut microbiota, a complex microbial ecosystem, is increasingly implicated in modulating responses to ICIs.
View Article and Find Full Text PDFAccess Microbiol
January 2025
Department of Biological Sciences, The George Washington University, Washington DC 20052, USA.
Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.
View Article and Find Full Text PDFAnim Microbiome
January 2025
Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 5C1, Canada.
Symbiotic microbiota are important drivers of host behaviour, health, and fitness. While most studies focus on humans, model organisms, and domestic or economically important species, research investigating the role of host microbiota in wild populations is rapidly accumulating. Most studies focus on the gut microbiota; however, skin and other glandular microbiota also play an important role in shaping traits that may impact host fitness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!