Temperature sensation involves thermosensitive TRP (thermoTRP) and non-TRP channels. larval Class III (CIII) neurons serve as the primary cold nociceptors and express a suite of thermoTRP channels implicated in noxious cold sensation. How CIII neurons code temperature remains unclear. We combined computational and electrophysiological methods to address this question. In electrophysiological experiments, we identified two basic cold-evoked patterns of CIII neurons: bursting and spiking. In response to a fast temperature drop to noxious cold, CIII neurons distinctly mark different phases of the stimulus. Bursts frequently occurred along with the fast temperature drop, forming a peak in the spiking rate and likely coding the high rate of the temperature change. Single spikes dominated at a steady temperature and exhibited frequency adaptation following the peak. When temperature decreased slowly to the same value, mainly spiking activity was observed, with bursts occurring sporadically throughout the stimulation. The spike and the burst frequencies positively correlated with the rate of the temperature drop. Using a computational model, we explain the distinction in the occurrence of the two CIII cold-evoked patterns bursting and spiking using the dynamics of a thermoTRP current. A two-parameter activity map (Temperature, constant TRP current conductance) marks parameters that support silent, spiking, and bursting regimes. Projecting on the map the instantaneous TRP conductance, governed by activation and inactivation processes, reflects temperature coding responses as a path across silent, spiking, or bursting domains on the map. The map sheds light on how various parameter sets for TRP kinetics represent various types of cold-evoked responses. Together, our results indicate that bursting detects the high rate of temperature change, whereas tonic spiking could reflect both the rate of change and magnitude of steady cold temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572325 | PMC |
http://dx.doi.org/10.3390/ijms241914638 | DOI Listing |
bioRxiv
August 2024
Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY.
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA.
Temperature sensation involves thermosensitive TRP (thermoTRP) and non-TRP channels. larval Class III (CIII) neurons serve as the primary cold nociceptors and express a suite of thermoTRP channels implicated in noxious cold sensation. How CIII neurons code temperature remains unclear.
View Article and Find Full Text PDFPharmaceutics
August 2023
Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Majka Tereza 47, 1000 Skopje, North Macedonia.
Lipid nano-systems were prepared and characterized in a series of well-established in vitro tests that could assess their interactions with the and cell lines as a model for the blood-brain barrier and neuronal function, accordingly. The prepared formulations of nanoliposomes and nanostructured lipid carriers were characterized by z-average diameters of ~120 nm and ~105 nm, respectively, following a unimodal particle size distribution (PDI < 0.3) and negative Z-potential (-24.
View Article and Find Full Text PDFbioRxiv
August 2023
Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
Metazoans detect and differentiate between innocuous (non-painful) and/or noxious (harmful) environmental cues using primary sensory neurons, which serve as the first node in a neural network that computes stimulus specific behaviors to either navigate away from injury-causing conditions or to perform protective behaviors that mitigate extensive injury. The ability of an animal to detect and respond to various sensory stimuli depends upon molecular diversity in the primary sensors and the underlying neural circuitry responsible for the relevant behavioral action selection. Recent studies in larvae have revealed that somatosensory class III multidendritic (CIII md) neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli.
View Article and Find Full Text PDFElife
January 2023
Neuroscience Institute, Georgia State University, Atlanta, Georgia.
Individual sensory neurons can be tuned to many stimuli, each driving unique, stimulus-relevant behaviors, and the ability of multimodal nociceptor neurons to discriminate between potentially harmful and innocuous stimuli is broadly important for organismal survival. Moreover, disruptions in the capacity to differentiate between noxious and innocuous stimuli can result in neuropathic pain. larval class III (CIII) neurons are peripheral noxious cold nociceptors and innocuous touch mechanosensors; high levels of activation drive cold-evoked contraction (CT) behavior, while low levels of activation result in a suite of touch-associated behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!