Coiled-coil domains (CCDs) play key roles in regulating both healthy cellular processes and the pathogenesis of various diseases by controlling protein self-association and protein-protein interactions. Here, we probe the mechanism of oligomerization of a peptide representing the CCD of the STIL protein, a tetrameric multi-domain protein that is over-expressed in several cancers and associated with metastatic spread. STIL tetramerization is mediated both by an intrinsically disordered domain (STIL) and a structured CCD (STIL CCD). Disrupting STIL oligomerization via the CCD inhibits its activity We describe a comprehensive biophysical and structural characterization of the concentration-dependent oligomerization of STIL CCD peptide. We combine analytical ultracentrifugation, fluorescence and circular dichroism spectroscopy to probe the STIL CCD peptide assembly in solution and determine dissociation constants of both the dimerization, (K = 8 ± 2 µM) and tetramerization (K = 68 ± 2 µM) of the WT STIL CCD peptide. The higher-order oligomers result in increased thermal stability and cooperativity of association. We suggest that this complex oligomerization mechanism regulates the activated levels of STIL in the cell and during centriole duplication. In addition, we present X-ray crystal structures for the CCD containing destabilising (L736E) and stabilising (Q729L) mutations, which reveal dimeric and tetrameric antiparallel coiled-coil structures, respectively. Overall, this study offers a basis for understanding the structural molecular biology of the STIL protein, and how it might be targeted to discover anti-cancer reagents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572602 | PMC |
http://dx.doi.org/10.3390/ijms241914616 | DOI Listing |
Int J Mol Sci
September 2023
Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel.
Sci Rep
April 2016
Sheba Cancer Research Center and the Edmond and Lily Safra Children Hospital, Sheba Medical Center, Tel-Hashomer 52621, Israel.
The STIL protein is essential for centriole replication and for the non-templated, de novo centriole biogenesis that is required for mammalian embryogenesis. Here we performed quantitative biophysical and structural analysis of the central short coiled coil domain (CCD) of STIL that is critical for its function. Using biophysical, biochemical and cell biology approaches, we identified the specific residues in the CCD that mediate the oligomerization, centrosomal localization and protein interactions of STIL.
View Article and Find Full Text PDFIn streak tube imaging lidar (STIL), streak images are obtained using a CCD camera. However, noise in the captured streak images can greatly affect the quality of reconstructed 3D contrast and range images. The greatest challenge for streak image denoising is reducing the noise while preserving details.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!