Ion channels play an important role in the cellular functions of various organ systems, such as the nervous, cardiovascular, immune, and endocrine systems, and are potential therapeutic targets for treatments of their dysfunctions, via 'channelopathy' [...].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572404 | PMC |
http://dx.doi.org/10.3390/ijms241914419 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.
View Article and Find Full Text PDFSmall
January 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China.
The reasonable design of advanced anode materials for electrochemical energy storage (EES) devices is crucial in expediting the progress of renewable energy technologies. NbO has attracted increasing research attention as an anode candidate. Defect engineering is regarded as a feasible approach to modulate the local atomic configurations within NbO.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
The hydrogel adhesives with strong tissue adhesion and biological characteristics adhm202404447are urgently needed for injury sealing and tissue repair. However, the negative correlation between tissue adhesion and the mechanical strength poses a challenge for their practical application. Herein, a bio-inspired cohesive enhancement strategy is developed to prepare the hydrogel adhesive with simultaneously enhanced mechanical strength and tissue adhesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!