Background: Low-grade, chronic inflammation in the central nervous system characterized by glial reactivity is one of the major hallmarks for aging-related neurodegenerative diseases like Alzheimer's disease (AD). The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex and may be differentially vulnerable in various neurodegenerative diseases. However, the impact of chronic neuroinflammation on the cholinergic function is still unclear.
Methods: To gain further insight into age-related cholinergic decline, we investigated the cumulative effects of aging and chronic neuroinflammation on the structure and function of the septal cholinergic neurons in transgenic mice expressing interleukin-6 under the GFAP promoter (GFAP-IL6), which maintains a constant level of gliosis. Immunohistochemistry combined with unbiased stereology, single cell 3D morphology analysis and in vitro whole cell patch-clamp measurements were used to validate the structural and functional changes of BFCN and their microglial environment in the medial septum.
Results: Stereological estimation of MS microglia number displayed significant increase across all three age groups, while a significant decrease in cholinergic cell number in the adult and aged groups in GFAP-IL6 mice compared to control. Moreover, we observed age-dependent alterations in the electrophysiological properties of cholinergic neurons and an increased excitability profile in the adult GFAP-IL6 group due to chronic neuroinflammation. These results complimented the significant decrease in hippocampal pyramidal spine density seen with aging and neuroinflammation.
Conclusions: We provide evidence of the significant impact of both aging and chronic glial activation on the cholinergic and microglial numbers and morphology in the MS, and alterations in the passive and active electrophysiological membrane properties of septal cholinergic neurons, resulting in cholinergic dysfunction, as seen in AD. Our results indicate that aging combined with gliosis is sufficient to cause cholinergic disruptions in the brain, as seen in dementias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576363 | PMC |
http://dx.doi.org/10.1186/s12974-023-02897-5 | DOI Listing |
Background: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.
Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).
Glia
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown.
View Article and Find Full Text PDFJ Neurochem
January 2025
Neurosciences and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
The adult central nervous system (CNS) hosts several niches, in which the neural stem and precursor cells (NPCs) reside. The subventricular zone (SVZ) lines the lateral brain ventricles and the subgranular zone (SGZ) is located in the dentate gyrus of the hippocampus. SVZ and SGZ NPCs replace neurons and glia in the homeostatic as well as diseased or injured states.
View Article and Find Full Text PDFToxics
November 2024
College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
The highly hazardous chemical ammonia has been proven to be absorbed by nanoparticles, thereby exerting highly toxic effects on aquatic organisms. As a ubiquitous pollutant in aquatic environments, polystyrene nanomicroplastics (PSNPs) have shown strong adsorption capacity due to their large surface area. Therefore, the potential joint effects of ammonia and PSNPs need to be clarified.
View Article and Find Full Text PDFBiomedicines
December 2024
Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St., New Orleans, LA 70112, USA.
(1) Background: Impeded resolution of inflammation contributes substantially to the pathogenesis of Alzheimer's disease (AD); consequently, resolving inflammation is pivotal to the amelioration of AD pathology. This can potentially be achieved by the treatment with specialized pro-resolving lipid mediators (SPMs), which should resolve neuroinflammation in brains. (2) Methods: Here, we report the histological effects of long-term treatment with an SPM, maresin-like 1 (MarL1), on AD pathogenesis in a transgenic 5xFAD mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!