Accumulation of β-Amyloid Leads to a Decrease in Lynx1 and Lypd6B Expression in the Hippocampus and Increased Expression of Proinflammatory Cytokines in the Hippocampus and Blood Serum.

Dokl Biochem Biophys

Interdisciplinary Scientific and Educational School "Molecular Technologies of Living Systems and Synthetic Biology", Faculty of Biology, Moscow State University, Moscow, Russia.

Published: August 2023

Alzheimer's disease is a rapidly progressive neurodegenerative disease, the development of which is associated with the accumulation of β-amyloid oligomers, dysfunction of the α7-nAChR nicotinic acetylcholine receptor, and activation of inflammation. Previously, we showed that the neuromodulator Lynx1, which belongs to the Ly6/uPAR family, competes with β-amyloid(1-42) for binding to α7-nAChR. In this work, we studied the expression and localization of Ly6/uPAR family proteins in the hippocampus of 2xTg-AD transgenic mice that model AD and demonstrate increased amyloidosis in the brain. Using real-time PCR, we showed a decrease in the expression of the genes encoding Lynx1, Lypd6b, and the postsynaptic marker PSD95, as well as an increase in the expression of the TNFα gene in the hippocampus of 2xTg-AD mice. Histochemical analysis showed that, in the hippocampus of 2xTg-AD mice, Lynx1 does not colocalize with α7-nAChR, which can lead to the development of pathology when the receptor interacts with oligomeric β-amyloid. In addition, in 2xTg-AD mice, activation of systemic inflammation was shown, which manifests itself in a decrease in the serum level of SLURP-1, a Ly6/uPAR family protein capable of regulating inflammatory processes, as well as in an increase in the content of proinflammatory cytokines TNFα and TNFβ. Thus, α7-nAChR dysfunction and maintenance of the inflammatory microenvironment in the brain in Alzheimer's disease may be associated with a decrease in the expression of Ly6/uPAR family proteins that regulate α7-nAChR activity and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S1607672923700217DOI Listing

Publication Analysis

Top Keywords

ly6/upar family
16
hippocampus 2xtg-ad
12
2xtg-ad mice
12
accumulation β-amyloid
8
lynx1 lypd6b
8
proinflammatory cytokines
8
alzheimer's disease
8
family proteins
8
decrease expression
8
well increase
8

Similar Publications

Secreted and membrane-tethered mammalian neuromodulators from the Ly6/uPAR family are involved in regulation of many physiological processes. Some of them are expressed in the CNS in the neurons of different brain regions and target neuronal membrane receptors. Thus, Lynx1 potentiates nicotinic acetylcholine receptors (nAChRs) in the brain, while others like Lypd6 and Lypd6b suppress it.

View Article and Find Full Text PDF

Accumulation of β-Amyloid Leads to a Decrease in Lynx1 and Lypd6B Expression in the Hippocampus and Increased Expression of Proinflammatory Cytokines in the Hippocampus and Blood Serum.

Dokl Biochem Biophys

August 2023

Interdisciplinary Scientific and Educational School "Molecular Technologies of Living Systems and Synthetic Biology", Faculty of Biology, Moscow State University, Moscow, Russia.

Alzheimer's disease is a rapidly progressive neurodegenerative disease, the development of which is associated with the accumulation of β-amyloid oligomers, dysfunction of the α7-nAChR nicotinic acetylcholine receptor, and activation of inflammation. Previously, we showed that the neuromodulator Lynx1, which belongs to the Ly6/uPAR family, competes with β-amyloid(1-42) for binding to α7-nAChR. In this work, we studied the expression and localization of Ly6/uPAR family proteins in the hippocampus of 2xTg-AD transgenic mice that model AD and demonstrate increased amyloidosis in the brain.

View Article and Find Full Text PDF

Three-finger toxins (3FTXs) are a functionally diverse family of toxins, apparently unique to venoms of caenophidian snakes. Although the ancestral function of 3FTXs is antagonism of nicotinic acetylcholine receptors, redundancy conferred by the accumulation of duplicate genes has facilitated extensive neofunctionalization, such that derived members of the family interact with a range of targets. 3FTXs are members of the LY6/UPAR family, but their non-toxin ancestor remains unknown.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are broadly expressed in the central and peripheral nervous systems, playing essential roles in cholinergic neurotransmission. The lynx family proteins, a subset of the Ly6/uPAR superfamily expressed in multiple brain regions, have been shown to bind to nAChRs and modulate their function via allosteric regulation. The binding interactions between lynx and nAChRs, however, have not been systematically quantified and compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!