To address the staircasing problem in deblurred images generated by a simple total variation (TV) based model, one approach is to use the total fractional-order variation (TFOV) image deblurring model. However, the discretization of the Euler-Lagrange equations for the TFOV-based model results in a nonlinear ill-conditioned system, which adversely influences the performance of computational methods like Krylov subspace algorithms (e.g., Generalized Minimal Residual, Conjugate Gradient). To address this challenge, three novel preconditioned matrices are proposed to improve the conditioning of the primal model when using the conjugate gradient method. These matrices are designed based on circulant approximations of the matrix associated with blurring kernel. Experimental evaluations demonstrate the effectiveness of the proposed preconditioned matrices in enhancing the convergence and accuracy of the conjugate gradient method for solving the primal form of the TFOV-based image deblurring model. The results highlight the importance of appropriate preconditioning strategies in achieving robust and high-quality image deblurring using the TFOV approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575942 | PMC |
http://dx.doi.org/10.1038/s41598-023-44511-x | DOI Listing |
Comput Vis ECCV
November 2024
University of Minnesota, Minneapolis.
Diffusion models have emerged as powerful generative techniques for solving inverse problems. Despite their success in a variety of inverse problems in imaging, these models require many steps to converge, leading to slow inference time. Recently, there has been a trend in diffusion models for employing sophisticated noise schedules that involve more frequent iterations of timesteps at lower noise levels, thereby improving image generation and convergence speed.
View Article and Find Full Text PDFNat Commun
January 2025
Research Laboratory of Electronics, MIT, Cambridge, MA, USA.
Three-dimensional subcellular imaging is essential for biomedical research, but the diffraction limit of optical microscopy compromises axial resolution, hindering accurate three-dimensional structural analysis. This challenge is particularly pronounced in label-free imaging of thick, heterogeneous tissues, where assumptions about data distribution (e.g.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA. Electronic address:
Background And Objective: Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities.
Methods: Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration.
Biol Imaging
November 2024
Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France.
We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
Drones have emerged as a critical tool for the detection of high-altitude glass curtain cracks. However, their utility is often compromised by vibrations and other environmental factors that can induce motion blur, compromising image quality and the accuracy of crack detection. This paper presents a novel GAN-based and enhanced U-shaped Transformer network, named GlassCurtainCrackDeblurNet, designed specifically for the deblurring of drone-captured images of glass curtain cracks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!