LncRNA RARA-AS1 could serve as a novel prognostic biomarker in pan-cancer and promote proliferation and migration in glioblastoma.

Sci Rep

Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, No. 20 West Temple Road, Nantong, 226001, Jiangsu, China.

Published: October 2023

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cancer progression and are potential biomarkers for diagnosis and treatment. This study investigates the role of RARA Antisense RNA 1 (RARA-AS1) in cancer and its implications for diagnosis and treatment. Various bioinformatics tools were conducted to analyze the expression patterns, immune-related functions, methylation, and gene expression correlations of RARA-AS1, mainly including the comparisons of different subgroups and correlation analyses between RARA-AS1 expression and other factors. Furthermore, we used short hairpin RNA to perform knockdown experiments, investigating the effects of RARA-AS1 on cell proliferation, invasion, and migration in glioblastoma. Our results revealed that RARA-AS1 has distinct expression patterns in different cancers and exhibits notable correlation with prognosis. Additionally, RARA-AS1 is highly correlated with certain immune checkpoints and mismatch repair genes, indicating its potential role in immune infiltration and related immunotherapy. Further analysis identified potential effective drugs for RARA-AS1 and demonstrated its potential RNA binding protein (RBP) mechanism in glioblastoma. Besides, a series of functional experiments indicated inhibiting RARA-AS1 could decrease cell proliferation, invasion, and migration of glioblastoma cell lines. Finally, RARA-AS1 could act as an independent prognostic factor for glioblastoma patients and may serve as a promising therapeutic target. All in all, Our study provides a comprehensive understanding of the functions and implications of RARA-AS1 in pan-cancer, highlighting it as a promising biomarker for survival. It is also an independent risk factor affecting prognosis in glioblastoma and an important factor affecting proliferation and migration in glioblastoma, setting the stage for further mechanistic investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575974PMC
http://dx.doi.org/10.1038/s41598-023-44677-4DOI Listing

Publication Analysis

Top Keywords

migration glioblastoma
16
rara-as1
10
proliferation migration
8
diagnosis treatment
8
expression patterns
8
cell proliferation
8
proliferation invasion
8
invasion migration
8
glioblastoma
7
lncrna rara-as1
4

Similar Publications

Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts.

View Article and Find Full Text PDF

Comprehensive analysis and experiments identified ANXA1 as an unfavorable prognosticator in glioma.

Transl Oncol

January 2025

Department of neurosurgery, Jiangnan university Medical Center, Wuxi, Jiangsu province, 214002, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu province, 214002, PR China. Electronic address:

Background: ANXA1 was upregulated in gliomas in previous bulk sequencing studies. we examined the role of ANXA1 in glioma using bioinformatics analysis and experiments.

Methods: Two cohorts were adopted to validate the prognostic value of ANXA1 in gliomas.

View Article and Find Full Text PDF

Glioblastoma-derived migrasomes promote migration and invasion by releasing PAK4 and LAMA4.

Commun Biol

January 2025

Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, PR China.

Almost all high-grade gliomas, particularly glioblastoma (GBM), are highly migratory and aggressive. Migrasomes are organelles produced by highly migratory cells capable of mediating intercellular communication. Thus, GBM cells may produce migrasomes during migration.

View Article and Find Full Text PDF

BRAT1 - a new therapeutic target for glioblastoma.

Cell Mol Life Sci

January 2025

Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany.

Glioblastoma (GBM), the most malignant primary brain tumor in adults, has poor prognosis irrespective of therapeutic advances due to its radio-resistance and infiltrative growth into brain tissue. The present study assessed functions and putative druggability of BRCA1-associated ATM activator 1 (BRAT1) as a crucial factor driving key aspects of GBM, including enhanced DNA damage response and tumor migration. By a stable depletion of BRAT1 in GBM and glioma stem-like (GSC) cell lines, we observed a delay in DNA double-strand break repair and increased sensitivity to radiation treatment, corroborated by in vitro and in vivo studies demonstrating impaired tumor growth and invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!