A biotechnology for personalized ex vivo gene therapy based on molecular genomic balancing of hematopoietic stem cell (HSC) chromatin with nucleosome monomers of human genomic DNA (hDNA) has been developed and implemented in the clinic to change (to "correct") mutant chromosome loci genomes of dominant HSC clones that form mono- and oligoclonal hematopoiesis during aging and major (oncological, cardiovascular, neurodegenerative and autoimmune) fatal immune-mediated diseases of civilization. A fundamentally new biotechnological approach has been applied to the delivery of genetic material into eukaryotic stem and progenitor cells by establishing an artificial "recombinogenic situation" in them to induce homologous recombination (equivalent replacement) of mutant DNA regions with healthy hDNA. In experimental preclinical trials, the effectiveness of genomic balancing technology has been proven to reduce the risk of sudden death in old animals and to increase the lifespan of outbred mice by 30% and Wistar rats by 57%. The improvement in their quality of life, compared with the control, is explained by an increase in the telomeric regions of the HSCs and HPCs chromosomes by 1.5-2 times. The potential of the technology to slow down the hereditary neurodegenerative diseases on the model of amyotrophic lateral sclerosis is shown. The effectiveness of this technology in clinical practice is presented on the example of a terminal patient with stage 4 neuroendocrine cancer. This technology used in the treatment of a number of oncological, neurodegenerative, autoimmune and hereditary diseases with clonal hematopoiesis is able to arrest the progression of the disease, prevent its recurrence, prolong the active life of a person, increase the average life expectancy and prevent sudden death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.irn.2023.07.005 | DOI Listing |
Bot Stud
January 2025
Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Electrical and Information Engineering, Zhengzhou University, No. 100, Science Avenue, Hightech District, Zhengzhou City 450001, Henan Province, China.
Structural network control principles provided novel and efficient clues for the optimization of personalized drug targets (PDTs) related to state transitions of individual patients. However, most existing methods focus on one subnetwork or module as drug targets through the identification of the minimal set of driver nodes and ignore the state transition capabilities of other modules with different configurations of drug targets [i.e.
View Article and Find Full Text PDFThe use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods.
View Article and Find Full Text PDFJ Plant Physiol
January 2025
Department of Botany, University of Delhi, New Delhi, 110007, Delhi, India. Electronic address:
As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide).
View Article and Find Full Text PDFFront Genet
January 2025
Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China.
Relationships between cellular senescence and gastrointestinal cancers have gained prominence in recent years. The currently accepted theory suggests that cellular senescence and cancer occurrence exhibit "double-edged sword" effects. Cellular senescence is related to cancer via four "meta-hallmarks" i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!