Transcriptional landscape of human trophoblast cells treated with calcitriol and TGF-β1.

Mol Cell Endocrinol

Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Ciudad de México, 14080, Mexico. Electronic address:

Published: January 2024

Calcitriol and transforming growth factor beta 1 (TGF-β1) are unrelated molecules that regulate biological processes according to the genetic target, cell type, and context. Several studies have shown independent effects of calcitriol and TGF-βs on the placenta, but there is no information regarding the impact of their combination on these cells. Therefore, this study analyzed the effects of calcitriol, TGF-β1, and their combination in primary cultures of human trophoblast cells using a whole genome expression microarray. Data analysis revealed a set of differentially expressed genes induced by each treatment. Enrichment pathway analysis identified modulatory effects of calcitriol on genes related to metabolic processes such as vitamin D, steroid, and fat-soluble vitamins as well as antimicrobial and immune responses. In relation to TGF-β1, the analysis showed a few differentially expressed genes that were mainly associated with the neutrophil immune response. Lastly, the analysis revealed that the combination of calcitriol and TGF-β1 up-regulated genes involving both immunologic processes and the biosynthesis of unsaturated fatty acids, eicosanoids, and lipoxins, among others. In contrast, pathways down-regulated by the combination were mostly associated with the catabolic process of acylglycerols and peptides, PPAR signaling pathway, cellular response to low-density lipoprotein stimulus, renin angiotensin system and digestion, mobilization and transport of lipids. Consistent with these results, the combined treatment on human trophoblast cells induced the accumulation of intracellular neutral lipid droplets and stimulated both gene and protein expression of 15-hydroxyprostaglandin dehydrogenase. In conclusion, the results revealed that differentially expressed genes induced by the combination modified the transcriptional landscape compared to each treatment alone, mainly altering the storage, activity and metabolism of lipids, which might have an impact on placental development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2023.112088DOI Listing

Publication Analysis

Top Keywords

human trophoblast
12
trophoblast cells
12
calcitriol tgf-β1
12
effects calcitriol
12
differentially expressed
12
expressed genes
12
transcriptional landscape
8
analysis revealed
8
genes induced
8
calcitriol
6

Similar Publications

Graves' disease (GD) and gestational transient thyrotoxicosis (GTT) are the most common causes of thyrotoxicosis during pregnancy, with prevalence ranging from 0.1% to 1% and from 1% to 3%, respectively. Hyperthyroidism during pregnancy can have severe consequences if not promptly recognized and treated.

View Article and Find Full Text PDF

Using Transcriptomic Signatures to Elucidate Individual and Mixture Effects of Inorganic Arsenic and Manganese in Human Placental Trophoblast HTR-8/SVneo Cells.

Toxicol Sci

January 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.

Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.

View Article and Find Full Text PDF

Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta.

View Article and Find Full Text PDF

Proteomic Approach Using DIA-MS Identifies Morphogenesis-Associated Proteins during Cardiac Differentiation of Human iPS Cells.

ACS Omega

January 2025

Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have potential applications in regenerative medicine. The quality by design (QbD) approach enables the efficiency and quality assurance in the manufacturing of hiPSC-derived products. It requires a molecular understanding of hiPSC differentiation throughout the differentiation process; however, information on cardiac differentiation remains limited.

View Article and Find Full Text PDF

Preeclampsia affects 2% to 8% of pregnancies worldwide and results in significantly high maternal and perinatal morbidity and mortality, with delivery being the only definitive treatment. It is not a single disorder, but rather a manifestation of an insult(s) to the uteroplacental unit -whether maternal, fetal, and/or placental. Multiple etiologies have been implicated, including uteroplacental ischemia, maternal infection and/or inflammation, maternal obesity, sleep disorders, hydatidiform mole, maternal intestinal dysbiosis, autoimmune disorders, fetal diseases, breakdown of maternal-fetal immune tolerance, placental aging, and endocrine disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!