Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Biomimetic soft pneumatic actuators (SPA) with Kresling origami patterns have unique advantages over conventional rigid robots, owing to their adaptability and safety.
Objectives: Inspired by cloning and moving behaviors observed from salps, we proposed an SPA based on a Kresling-like pattern with a rigid skeleton. The elongation and output force were tested, and the effectiveness of the applications with the SPA was evaluated.
Methods: The proposed SPA consists of rigid skeletons and a soft skin. The rigid skeletons are constructed using layers of Kresling-like patterns, while a novel extensible inserting structure is devised to replace the folds found in conventional Kresling patterns. This innovative approach ensures that the SPA exhibits axial contraction/expansion motion without any twisting movement. To mimic the bionic characteristics of swimming and ingesting progress of salps, the proposed SPA can perform an axial contraction motion without twisting and a controllable bending motion based on multi-layered Kresling-like patterns; to mimic the cloning and releasing life phenomena of salps, the number of layers of Kresling-like patterns is changeable by adding or reducing skeleton components according to the practical needs.
Results: The experimental elongation results on the SPA with multiple layers of Kresling-like patterns show that the elongation can increase to above 162% by adding layers; the experimental output force results show that the three-layer SPA can provide 6.36 N output force at an air flow rate of 10 L/min, and the output force will continue to increase as the number of layers of Kresling-like pattern increases or the air flow rate increases. Further, we demonstrate the applications of the SPA in soft grippers, scissor grippers, claw grippers and pipe crawlers.
Conclusion: Our proposed SPA can avoid twisting in the radial contraction motion with high elongation and output force, and provide the practical guidance for bio-inspired soft robotic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379988 | PMC |
http://dx.doi.org/10.1016/j.jare.2023.10.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!