Tapping panel dryness (TPD) has become the mostimportant limiting factor for increasing natural rubber yield, whereas illuminating the molecular mechanisms underlying TPD is the prerequisite for solving the problem of TPD. However, molecular mechanisms underlying TPD are largely unknown. In this study, healthy and different stages of TPD-affected rubber trees were utilized to analyze TPD for the first time. We found that the changing tendencies of key latex physiological parameters were closely related to TPD occurrence and development. To reveal the molecular mechanisms underlying TPD, we sequenced and compared bark transcriptomes among healthy rubber tree, and TPD-affected ones at initial and advanced stages. In total, 8607 genes were identified as TPD-related genes in contrast to healthy rubber tree. According to gene expression profiles, the five samples were divided into three groups including healthy rubber tree, and TPD-affected rubber tree in the initial and advanced stages, which was consistent with the stages of TPD occurrence and development. Interestingly, only asmall proportionof the TPD-related genes were constantly down- or up-regulated with TPD occurrence and development. The TPD-related genes in KEGG pathways significantly enriched were closely associated with protein metabolism, cell division and differentiation, PCD, stress responses, terpene biosynthesis, and various metabolism processes. Moreover, overexpression of HbAPX2 identified as a TPD-related gene enhanced oxidative stress tolerance in S. cerevisiae. The typical symptoms of TPD, partial or complete dry zone (no latex flow) on tapping panel, might attribute to lower IPP available for rubber biosynthesis, and downregulation of the genes in post-IPP steps of rubber biosynthesis and the genes involved in latex flow. Our results not only provide new insights into molecular mechanisms underlying TPD occurrence and development but also contribute to developing effective measures to control TPD in rubber trees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2023.147894 | DOI Listing |
Alzheimers Dement
December 2024
ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).
Background: The Apolipoprotein E4 isoform (ApoE4), encoded by the APOE gene, stands out as the most influential genetic factor in late-onset Alzheimer's disease (LOAD). The ApoE4 isoform contributes to metabolic and neuropathological abnormalities during brain aging, with a strong correlation observed in APOE4-positive Alzheimer's disease cases between phosphorylated tau burden and amyloid deposition. Despite compelling evidence of APOE-mediated neuroinflammation influencing the progression of tau-mediated neurodegeneration, the molecular mechanisms underlying these phenomena remain largely unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Edith Cowan University, Perth, Western Australia, Australia.
Background: Accumulation of amyloid beta 42 (Aβ42) senile plaques is the most critical event leading to Alzheimer's disease (AD). Currently approved drugs for AD have not been able to effectively modify the disease. This has caused increasing research interests in health beneficial nutritious plant foods as viable alternative therapy to prevent or manage AD.
View Article and Find Full Text PDFBackground: Several studies have shown the influential role of nutraceuticals on cognition and mental functions. Dihydroxytrimethoxyflavone, a natural flavone found in herbal drugs, is documented to be neuroprotective in different model systems. Nevertheless, possible memory improvement effects of dihydroxytrimethoxyflavone via nuclear factor-E2-related factor 2 (Nrf2) (a crucial regulator of antioxidative system) has not been systematically evaluated.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a neurodegenerative disorder without a cure. Targeting this multifactorial disease by repurposing FDA approved drugs serves as a faster mode of treatment due to its pre-established human safety. We tested terazosin (TZ), an a-1 adrenergic receptor (AR) antagonist and phosphoglycerate kinase-1 (PGK1) activator as having potential to treat AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Shoolini University, Solan, Himachal Pradesh, India.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!