This study investigated the usability of adobe samples reinforced with calcium-based binders in a 3D-printed technique. These adobe samples' physical, mechanical, durability and microstructure characteristics were investigated and their 3D printability characteristics experimentally. In the case of adobe production by 3D-printing method, the compressive strength decreased by 9-33 % compared to mold casting. While the thermal conductivity coefficient of adobe samples varied between 0.833 and 1.421 W/mK, the thermal conductivity was reduced by 43 % thanks to the preference for gypsum. Within the scope of the LCA analysis, the slightest effect in terms of environmental damage was observed in mixtures containing gypsum compared to cement and slaked lime mixtures. As a result, it was determined that adobe's physical and mechanical characteristics could be improved by using gypsum, lime and cement, and these mixtures can be used in 3D-printing. It was determined that more sustainable adobe production is possible with gypsum and lime.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167695DOI Listing

Publication Analysis

Top Keywords

adobe samples
8
physical mechanical
8
adobe production
8
thermal conductivity
8
gypsum lime
8
adobe
6
assessment sustainability
4
sustainability producibility
4
producibility adobe
4
adobe constructions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!