Assessment of cold stability is essential for manufacture and commercialization of biotherapeutics. Storage stability is often estimated by measuring accelerated rates at elevated temperature and using mathematical models (as the Arrhenius equation). Although, this strategy often leads to an underestimation of protein aggregation during storage. In this work, we measured the aggregation rates of two antibodies in a broad temperature range (from 60 °C to -25 °C), using an isochoric cooling method to prevent freezing of the formulations below 0 °C. Both antibodies evidenced increasing aggregation rates when approaching extreme temperatures, because of hot and cold denaturation. This behavior was modelled using Arrhenius and Gibbs-Helmholtz equations, which enabled to deconvolute the contribution of unfolding from the protein association kinetics. This approach made possible to model the aggregation rates at refrigeration temperature (5 °C) in a relatively short timeframe (1-2 weeks) and using standard characterization techniques (SEC-HPLC and DLS).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2023.10.009DOI Listing

Publication Analysis

Top Keywords

aggregation rates
12
aggregation
5
native non-native
4
non-native aggregation
4
aggregation pathways
4
pathways antibodies
4
antibodies anticipated
4
anticipated cold-accelerated
4
cold-accelerated studies
4
studies assessment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!