Band offsets and point-defect charges of the aluminum and hafnium oxides in contact with the Cu(In,Ga)Sechalcopyrite.

J Phys Condens Matter

CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal.

Published: October 2023

Surface passivation of CuInSe(CIS) and related Cu(In,Ga)Se(CIGS) chalcopyrite materials by depositing selected dielectric layers has been a major research activity aiming to reduce interface recombination and increase the electrical efficiency of chalcopyrite-based thin-film solar cells. The present study reports calculations based on density-functional theory andthermodynamics that examine the origin of field-effect passivation from alumina and hafnia two wide-gap, predominantly ionic insulators that have exhibited promising passivation qualities in silicon-based microelectronics. The source of fixed charges within the bulk lattices of both oxides was studied by determining the thermodynamically most favorable charge states of their native defects within the admissible ranges of the metal and oxygen chemical potentials. An alignment of the electron bands based on the branch-point energies was performed in order to correctly place the defect charge-transition levels with respect to the band edges of the CIS and the CIGS materials. The trends and predictions of the sign of the fixed charges in either insulator were obtained as a function of temperature, oxygen partial pressure and Fermi-level position inside the band gaps of CIS and CIGS. The findings are discussed in connection with existing experimental studies that extracted the magnitude and polarity of the fixed charges of both alumina and hafnia by analyzing the electrical properties of the CIGS/insulator interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad0354DOI Listing

Publication Analysis

Top Keywords

fixed charges
12
alumina hafnia
8
cis cigs
8
band offsets
4
offsets point-defect
4
charges
4
point-defect charges
4
charges aluminum
4
aluminum hafnium
4
hafnium oxides
4

Similar Publications

Capacity Planning (Capital, Staff and Costs) of Inpatient Maternity Services: Pitfalls for the Unwary.

Int J Environ Res Public Health

January 2025

Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK.

This study investigates the process of planning for future inpatient resources (beds, staff and costs) for maternity (pregnancy and childbirth) services. The process of planning is approached from a patient-centered philosophy; hence, how do we discharge a suitably rested healthy mother who is fully capable of caring for the newborn baby back into the community? This demonstrates some of the difficulties in predicting future births and investigates trends in the average length of stay. While it is relatively easy to document longer-term (past) trends in births and the conditions relating to pregnancy and birth, it is exceedingly difficult to predict the future nature of such trends.

View Article and Find Full Text PDF

Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state PQ to the neutral state PQ, the use of a 20.

View Article and Find Full Text PDF

We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combine AHA with this ansatz for the electronic binding potential, E(d)=(Eu-Es)Ec-EsEu-Esd/d0+Es, where Eu, Ec, Es correspond to the energies of the united atom, calibration at d0, and the sum of infinitely separated atoms, respectively. Our model covers the two-dimensional electronic potential energy surface spanned by distances of 0.

View Article and Find Full Text PDF

Origins and conservation of topological polarization defects in resonant photonic-crystal diffraction.

Nanophotonics

January 2025

Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.

We present a continuative definition of topological charge to depict the polarization defects on any resonant diffraction orders in photonic crystal slab regardless they are radiative or evanescent. By using such a generalized definition, we investigate the origins and conservation of polarization defects across the whole Brillouin zone. We found that the mode crossings due to Brillouin zone folding contribute to the emergence of polarization defects in the entire Brillouin zone.

View Article and Find Full Text PDF

Background: The current mainstream pharmaceutical innovation system (PIS) is driven by the market-based logic of charging the highest prices societies will bear. Outcomes include unaffordable medicines, restricted access and pressure on health budgets. How can the innovation system change to deliver fairly-priced medicines?

Methods: We inductively developed a novel conceptual framework of the PIS as a complex adaptive system (CAS) analogous to a forest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!