Syndapin and GTPase RAP-1 control endocytic recycling via RHO-1 and non-muscle myosin II.

Curr Biol

Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Center for Lipid Research, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901-8521, USA. Electronic address:

Published: November 2023

After endocytosis, many plasma membrane components are recycled via membrane tubules that emerge from early endosomes to form recycling endosomes, eventually leading to their return to the plasma membrane. We previously showed that Syndapin/PACSIN-family protein SDPN-1 is required in vivo for basolateral endocytic recycling in the C. elegans intestine. Here, we document an interaction between the SDPN-1 SH3 domain and a target sequence in PXF-1/PDZ-GEF1/RAPGEF2, a known exchange factor for Rap-GTPases. We found that endogenous mutations engineered into the SDPN-1 SH3 domain, or its binding site in the PXF-1 protein, interfere with recycling in vivo, as does the loss of the PXF-1 target RAP-1. In some contexts, Rap-GTPases negatively regulate RhoA activity, suggesting a potential for Syndapin to regulate RhoA. Our results indicate that in the C. elegans intestine, RHO-1/RhoA is enriched on SDPN-1- and RAP-1-positive endosomes, and the loss of SDPN-1 or RAP-1 elevates RHO-1(GTP) levels on intestinal endosomes. Furthermore, we found that depletion of RHO-1 suppressed sdpn-1 mutant recycling defects, indicating that control of RHO-1 activity is a key mechanism by which SDPN-1 acts to promote endocytic recycling. RHO-1/RhoA is well known for controlling actomyosin contraction cycles, although little is known about the effects of non-muscle myosin II on endosomes. Our analysis found that non-muscle myosin II is enriched on SDPN-1-positive endosomes, with two non-muscle myosin II heavy-chain isoforms acting in apparent opposition. Depletion of nmy-2 inhibited recycling like sdpn-1 mutants, whereas depletion of nmy-1 suppressed sdpn-1 mutant recycling defects, indicating that actomyosin contractility controls recycling endosome function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841897PMC
http://dx.doi.org/10.1016/j.cub.2023.09.051DOI Listing

Publication Analysis

Top Keywords

non-muscle myosin
16
endocytic recycling
12
recycling
9
plasma membrane
8
sdpn-1
8
c elegans intestine
8
sdpn-1 sh3
8
sh3 domain
8
regulate rhoa
8
suppressed sdpn-1
8

Similar Publications

Myosin Light Chains in the Progression of Cancer.

Cells

December 2024

Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.

The myosin light chains (MLCs) of non-muscle myosin II are known to regulate cellular architecture and generate cellular forces; they also have an increasingly emerging role in the progression of cancer. The phosphorylation state of the myosin light chains controls the activity of myosins that are implicated in invasion and proliferation. In cancers, when proliferation is greatly increased, cytokinesis relies on phosphorylated light chains to activate the contractile forces used to separate the cells.

View Article and Find Full Text PDF

Amoeboid cells undergo durotaxis with soft end polarized NMIIA.

Elife

December 2024

Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Cell migration towards stiff substrates has been coined as durotaxis and implicated in development, wound healing, and cancer, where complex interplays between immune and non-immune cells are present. Compared to the emerging mechanisms underlying the strongly adhesive mesenchymal durotaxis, little is known about whether immune cells - migrating in amoeboid mode - could follow mechanical cues. Here, we develop an imaging-based confined migration device with a stiffness gradient.

View Article and Find Full Text PDF

Pikeperch (Sander Lucioperca) belongs to main predatory fish species in freshwater bodies throughout Europe playing the key role by reducing planktivorous fish abundance. Two size classes of the young-of-the-year (YOY) pikeperch are known in Europe and North America. Our long-term fish survey elucidates late-summer size distribution of YOY pikeperch in the Lipno Reservoir (Czechia) and recognizes two distinct subcohorts: smaller pelagic planktivores heavily outnumber larger demersal piscivores.

View Article and Find Full Text PDF

Non-muscle myosin (NMII) motor proteins have diverse developmental functions due to their roles in cell shape changes, cell migration, and cell adhesion. Zebrafish are an ideal vertebrate model system to study the NMII encoding myh genes and proteins due to high sequence homology, established gene editing tools, and rapid ex utero development. In humans, mutations in the NMII encoding MYH genes can lead to abnormal developmental processes and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!