The deep-sea can act as a sink for legacy contaminants such as organochlorines (OCs), causing damages in its inhabitants for their persistence and their prolonged effects in the organisms. HCB, DDT and its isomers, and 28 PCBs congeners were detected in muscle and embryonic tissues of three deep-sea chondrichthyes Chimaera monstrosa (n = 16), Dalatias licha (n = 12) and Etmopterus spinax (n = 51) sampled in Ligurian and Tyrrhenian Sea (Mediterranean Sea). Contaminant distribution in E. spinax and C. monstrosa was PCBs > DDTs ≫ HCB while in D. licha was DDTs > PCBs ≫ HCB. Statistically significant differences were highlighted in OC levels among the species, but no such differences were found among sexes. Ratios between DDT isomers highlighted an historical input of the pesticide in the environment. For the first time was also demonstrated maternal transfer in deep water chondrichthyes, specifically in E. spinax where was highlighted that transfer of contaminants increases with increasing compound's Log Kow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2023.115647DOI Listing

Publication Analysis

Top Keywords

mediterranean sea
8
ddt isomers
8
persistent organic
4
organic pollutants
4
pollutants pops
4
pops three
4
three bathyal
4
bathyal chondrichthyes
4
chondrichthyes north-western
4
north-western mediterranean
4

Similar Publications

First evidence of molecular response of the shrimp Hippolyte inermis to biodegradable microplastics.

J Hazard Mater

December 2024

Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via Francesco Buonocore, 42, Ischia 80077, Italy.

The increasing demand for sustainable alternatives to conventional plastics has propelled the interest in bioplastics. A few papers reported on the effects of plastics on crustaceans, but no indication about biodegradable polymers is available. Hippolyte inermis Leach, 1816 is a protandric shrimp commonly living on leaves of the seagrass Posidonia oceanica, in the Mediterranean Sea.

View Article and Find Full Text PDF

This study investigates the diversity and distribution of intertidal () species across different protection zones within the "Capo Gallo-Isola delle Femmine" Marine Protected Area (MPA) in the central Mediterranean Sea. Five species ( and ) were observed on the intertidal rocky shores, with varied abundances across the MPA's protection zones. was the only species found in all zones, with a much higher cover percentage in the most protected area (zone A).

View Article and Find Full Text PDF

is an invasive brown macroalga that has recently proliferated in the western Mediterranean Sea, causing significant environmental challenges. This alga, however, contains valuable bioactive compounds-alginate, mannitol, and phlorotannins-that can serve as biofertilizers to promote plant growth and aid in bioremediation of degraded or contaminated soils. This study focused on optimizing the extraction of these compounds from , transforming an ecological issue into a beneficial resource.

View Article and Find Full Text PDF

Invasion History and Dispersion Dynamics of the Mediterranean Fruit Fly in the Balkan Peninsula.

Insects

December 2024

Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece.

The Mediterranean fruit fly (medfly), (Wiedemann 1824; Diptera, Tephritidae), is considered one of the most important pests, infesting more than 300 species of fresh fruit and vegetables worldwide. The medfly is an important invasive species, which has spread from the eastern part of sub-Saharan Africa to all of the world's continents in recent centuries. Currently, the medfly is expanding its geographical range to cooler, temperate areas of the world, including northern areas of Mediterranean countries and continental areas of Central Europe.

View Article and Find Full Text PDF

Genetic Identity and Diversity of Loggerhead Sea Turtles in the Central Mediterranean Sea.

Genes (Basel)

December 2024

Conservation Biology Research Group, Department of Biology, University of Malta, MSD2080 Msida, Malta.

The conservation of loggerhead sea turtles () in the central Mediterranean benefits from an in-depth understanding of its population genetic structure and diversity. This study, therefore, investigates in Maltese waters by genetically analysing 63 specimens collected through strandings and in-water sampling, using mitochondrial DNA control region and microsatellites. Additionally, the two nests detected in Malta in 2023 were analysed for the same markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!