Heterocyclic compounds have been shown to be potential chemotherapeutic agents, especially the benzimidazole derivatives studied in this work. The ultimate goal in the search for biologically active and effective molecules is to commercialize a product whose stability must be reliable. Therefore, in the development of drugs, forced degradation experiments are performed under the environmental conditions to which they are subjected during transportation and storage to ensure quality and safety before marketing. Hydrolytic, thermal, photolytic, and degradation in the presence of hydrogen peroxide are experimental stress tests to which the newly synthesized compounds were subjected to gain insight into the degradation pathways of the analytes. Degradation of two benzimidazole derivatives was observed under all applied conditions while the major impact showed photolysis with ten and four degradation products, respectively. In total, eighteen major degradation products were detected and identified using high-resolution mass spectrometry. Computer models in the TEST program were applied to the proposed structures to evaluate the bioaccumulation factor, toxicity, and mutagenicity of the analyzed compounds, while density functional theory analysis (DFT) revealed factors affecting the vulnerability of systems towards exceeding acidic/basic conditions and HO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2023.115767 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!