Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Covering surgical wounds with biomaterials, biologic scaffolds, and mesenchymal stem cells (MSCs) improves the healing process and reduces postoperative complications. This study was designed to evaluate and compare the effect of MSC-free/MSC-seeded new collagen/poly(3-hydroxybutyrate) (COL/P3HB) composite scaffold and human amniotic membrane (HAM) on the colon anastomosis healing process. COL/P3HB scaffold was prepared using freeze-drying method. MSCs were isolated and characterized from rat adipose tissue. After biocompatibility evaluation by MTT assay, MSCs were seeded on the scaffold and HAM by micro-mass seeding technique. In total, 35 male rats were randomly divided into five groups. After the surgical procedure, cecum incisions were covered by the MSC-free/MSC-seeded scaffold or HAM. Incisions in the control group were only sutured. One month later, the healing process was determined by stereological analysis. The Kruskal-Wallis followed by Dunn's tests were utilized for statistical outcome analysis (SPSS software version 21). COL/10% P3HB scaffold showed the best mechanical and structural properties (7.86 MPa strength, porosity more than 75%). MTT assay indicated that scaffold and especially HAM have suitable biocompatibility. Collagenization and neovascularization were significantly higher, and necrosis was considerably lower in all treated groups in comparison with the controls. MSC-seeded scaffold and HAM significantly decrease inflammation and increase gland volume compared with other groups. The MSC-seeded HAM was significantly successful in decreasing edema compared with other groups. Newly synthesized COL/P3HB scaffold improves the colon anastomosis healing; however, the major positive effect belonged to HAM. MSCs remarkably increase their healing process. Further investigations may contribute to confirming these results in other wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.10.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!