Walnut shells and apricot pits were used to produce non-activated, air-activated and steam-activated biochar. The specific surface area decreased in the order steam-activated (500-727 m .g), air-activated (59-514 m.g) and non-activated biochars (1.71-236 m.g). The results indicated that water steam created a multi-layer block structure with a well-developed porous structure, especially at 900 °C, while activation with air resulted in a more fragmented structure with a higher amount of coarse pores, leading to lower specific surface values. Acetone sorption experiments were performed in order to determine the acetone sorption capacity and to evaluate the acetone sorption kinetics of the biochars, as well as to identify the possible mechanism of sorption. The maximum sorption capacity estimated from the adsorption isotherms up to a relative pressure of 0.95 ranged from 60.3 to 277.3 mg g, and was highest in the steam-activated biochar with the largest surface area. The acetone adsorption isotherms were fitted with different adsorption models, where the Fritz-Schlunder model showed the best fitting results. The adsorption kinetics was evaluated using two kinetics models - pseudo first order and pseudo second order. The results indicated that the biochars with a large surface area exhibited physical sorption through van der Waals forces as the dominant mechanism, while acetone sorption on samples with a smaller surface area can be attributed to a mixed dual sorption mechanism, which combines physical sorption and chemisorption on oxygen functional groups. The perfect reusability of the biochars was confirmed by four consecutive adsorption-desorption cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119205 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
GraPhage13 aerogels (GPAs) are ultralow density, porous structures fabricated through the self-assembly of graphene oxide (GO) and M13 bacteriophage. Given GPA's high surface area and extensive porous network, properties typically associated with highly adsorbent materials, it is essential to characterize its sorption capabilities, with a focus on unlocking its potential for advanced applications in areas such as biomedical sensing and environmental monitoring. Herein, the water, ethanol and acetone sorption properties of GPA were explored using dynamic vapor sorption (DVS).
View Article and Find Full Text PDFMaterials (Basel)
September 2024
Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland.
Iron oxide nanoparticles (IONPs) are an ideal sorbent for magnetic dispersion extraction due to their superparamagnetic properties and developed and active surface. This work aims to use IONPs, obtained by chemical co-precipitation, to purify 100% acetone and 50% acetone extracts from hop cones ( L.) obtained by ultrasonic-assisted solvent extraction.
View Article and Find Full Text PDFMolecules
August 2024
National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake.
View Article and Find Full Text PDFAAPS J
August 2024
Pharmaceutical Commercialization Technology, MMD, Merck & Co., Inc., 770 Sumneytown Pike, West Point, 19486, PA, USA.
A non-invasive capacitance instrument was embedded in the base of a vacuum-drying tray to monitor continuously the residual amount of solvent left in a pharmaceutical powder. Proof of concept was validated with Microcrystalline Cellulose laced with water, as well as water/acetone mixtures absorbed in a spray-dried Copovidone powder. To illustrate the role of impermeability of the base, we derive a model of vapor sorption that reveals the existence of a kinetic limit when solids are thinly spread, and a diffusion limit with greatly diminished effective diffusivity at large powder thickness.
View Article and Find Full Text PDFBiomed Chromatogr
August 2024
Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India.
The presence of undesired agrochemicals residues in soil and water poses risks to both human health and the environment. The behavior of pesticides in soil depends both on the physico-chemical properties of pesticides and soil type. This study examined the adsorption-desorption and leaching behavior of the maize herbicide tembotrione in soils of the upper (UGPZ), trans (TGPZ) and middle Gangetic plain zones of India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!