Observational studies have demonstrated a correlation between chronic obstructive pulmonary disease (COPD) and osteoporosis (OP). However, it is unclear whether there is genetic causality between COPD and bone mineral density (BMD) reduction at different sites. This study assessed the causal relationship between COPD and BMD in various anatomical locations. Data associated with COPD and BMD were obtained from published genome-wide association studies (GWAS). We selected single nucleotide polymorphisms (SNPs) that were strongly associated with COPD and BMD could serve as instrumental variables for the analysis. Inverse variance weighted, MR-Egger and weighted median were manipulated to evaluate causality. Subsequently, we conducted heterogeneity tests using Cochran Q test and tested for pleiotropy using the MR-Egger intercept. We performed leave-one-out sensitivity analysis to assess the robustness of the results. Additionally, we obtained more accurate causal genetic associations by removing any pleiotropic outlying SNPs and performed Mendelian randomization (MR) analysis with the remaining data. Our findings established that COPD was negatively associated with Heel-BMD (odds ratio[OR] = 0.978, 95% confidence interval [CI] = 0.966, 0.990, P = .0003) but not LS-BMD (OR = 0.981, 95% CI: 0.943, 1.020, P = .335), FA-BMD (OR = 0.984, 95% CI: 0.927, 1.046, P = .616), and FN-BMD (OR = 0.981, 95% CI: 0.950, 1.014, P = .249). In reverse MR analysis, the results showed no significant causal effect of BMD at different sites on COPD. The results were proved to be dependable and steady by sensitivity, heterogeneity, and pleiotropy analysis. We found that COPD increases the risk of decreased heel BMD, however, there is no evidence that the loss of BMD increases the risk of COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578729 | PMC |
http://dx.doi.org/10.1097/MD.0000000000035495 | DOI Listing |
J Orthop Surg Res
November 2024
Department of Minimally Invasive Spinal Surgery, The Affiliated Hospital of Wuhan Sports University, NO 279 Luoyu Road, Hongshan District, Wuhan, 430079, Hubei, China.
Croat Med J
October 2024
Tade Tadić, Clinical Department of Diagnostic and Interventional Radiology, University Hospital Split, Šoltanska 2, 21000 Split, Croatia,
Am J Physiol Lung Cell Mol Physiol
October 2024
Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain.
Chronic obstructive pulmonary disease (COPD) is regarded as an accelerated-age disease in which chronic inflammation, maladaptive immune responses, and senescence cell burden coexist. Accordingly, cellular senescence has emerged as a potential mechanism involved in COPD pathophysiology. In this study, 25 stable patients with COPD underwent a daily physical activity promotion program for 6 mo.
View Article and Find Full Text PDFInt J Gen Med
July 2024
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, People's Republic of China.
Background: COPD, combined with Osteoporosis, has a high incidence and potential for great harm. Choosing an optimal diagnostic method to achieve bone mineral density (BMD) screening is crucial for COPD patients. Studies on COPD patients with BMD reduction are lacking.
View Article and Find Full Text PDFRespir Res
July 2024
Department of Diagnostic & Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.
Background: Patients with COPD are often affected by loss of bone mineral density (BMD) and osteoporotic fractures. Natriuretic peptides (NP) are known as cardiac markers, but have also been linked to fragility-associated fractures in the elderly. As their functions include regulation of fluid and mineral balance, they also might affect bone metabolism, particularly in systemic disorders such as COPD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!