Optical scanning holography (OSH) can be applied to 3D fluorescent imaging. However, the optical setup for OSH is complicated due to the requirement of a phase shifter, a 2D mechanical scanner, and an interferometer. Although motionless optical scanning holography (MOSH) can overcome the problem, quantitative phase imaging (QPI) has not yet been realized because MOSH can only obtain incoherent holograms. If QPI in MOSH is realized, MOSH can be applied to various applications. In this Letter, MOSH-based QPI (MOSH-QPI) is proposed. In addition, a simple description of a coherent mode of OSH is presented. In the proof-of-principle experiment, the spatially divided phase-shifting technique is applied to reduce the number of measurements. The feasibility of MOSH-QPI is confirmed by measuring a phase distribution of a microlens array. MOSH-QPI is also applied to measure practical samples, and its results are compared with the experimental results of the conventional one using a Mach-Zehnder interferometer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.496419 | DOI Listing |
Background: To evaluate the associations between anatomical changes and visual outcomes after membrane peeling in eyes with different stages of idiopathic epiretinal membrane (iERM) using optical coherence tomography angiography (OCTA).
Methods: All iERM eyes were graded into four stages based on the presence of ectopic inner foveal layers (EIFL) and underwent 23-gauge vitrectomy combined with ERM and internal limiting membrane (ILM) peeling, while their fellow eyes were treated as the control group. OCTA was used to measure retinal thickness(RT), foveal avascular zone (FAZ)-related parameters and superficial and deep capillary plexus (SCP and DCP) layers using 6 × 6 mm scans before, 1 month and 3 months after surgery.
Br J Ophthalmol
January 2025
Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
Background/aims: To identify the risk factors for neuropathic corneal pain (NCP) following corneal refractive surgery and to report its clinical manifestations, imaging and proteomic characteristics.
Methods: This 1 year prospective cohort study included 100 eyes that underwent small incision lenticule extraction (SMILE) or laser-assisted in situ keratomileusis (LASIK). Ocular surface assessments, in-vivo confocal microscopy scans, tear neuromediators and proteomics analyses were performed.
J Med Microbiol
January 2025
Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India.
Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies.
View Article and Find Full Text PDFACS Electrochem
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!