In this study, a probe-type all-fiber tiny-displacement sensor is proposed and experimentally demonstrated, which is realized by using an all-fiber orbital-angular-momentum (OAM) interferometer, where a probe is especially adopted and inserted into the testing arm of the OAM interferometer. The proposed device takes full advantages of the OAM interferometer and the probe-type fiber sensor, making it completely available to the tiny-displacement measurement. As a result, changes in displacement (ranging from 0 nm to 750 nm) with a real resolution of ∼8.81 nm have been successfully measured. To our knowledge, this is the first demonstration of an all-fiber probe-type OAM interferometer, which may find potential application to high-precision tiny displacement in a small confined space.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.503817DOI Listing

Publication Analysis

Top Keywords

oam interferometer
16
probe-type all-fiber
8
all-fiber tiny-displacement
8
tiny-displacement sensor
8
probe-type
4
sensor based
4
based orbital-angular-momentum
4
orbital-angular-momentum interferometry
4
interferometry study
4
study probe-type
4

Similar Publications

A phase demodulation algorithm based on an adaptive polar transform is proposed that can achieve picometer-scale measurements in orbital angular momentum (OAM) interferometry. The proposed algorithm converts the rotational movement in a petal-shaped interference pattern into translational movement of the grayscale projection curves, so that can be easily measured using correlation operations to determine the pixel displacement in determining the rotation angle. Displacements ranging from -120 nm to 120 nm have been measured for various topological charges, with a minimum average deviation of 0.

View Article and Find Full Text PDF

The disturbance of the scattering medium, such as hazy, can affect the propagation of vortex beams and induce cross-talk within the orbital angular momentum (OAM) spectrum in optical communications based on vortex beams. This paper first validates the integrated scattering phase screen model through experimental beam phase measurements using a simple interferometer. Then, the influence of macroscopic physical parameters of the scattering medium on the OAM spectrum is investigated based on the hazy scattering phase model.

View Article and Find Full Text PDF

In the past few years, annular structured beams have been extensively studied due to their unique "doughnut" structure and characteristics such as phase and polarization vortices. Especially in the 2 µm wavelength range, they have shown promising applications in fields such as novel laser communication, optical processing, and quantum information processing. In this Letter, we observed basis vector patterns with orthogonality and completeness by finely cavity-mode tailoring with end-mirror space position in a Tm:CaYAlO laser.

View Article and Find Full Text PDF

Photonic orbital angular momentum (OAM) offers a promising platform for high-dimensional quantum information processing. While geometric phase (GP) is the crucial tool in enabling intrinsically fault-tolerant quantum computation, the measurement of GP using linear optics remains relatively unexplored in the OAM state space. Here, we propose an experimental scheme to detect GP shifts resulting from the cyclic evolution of OAM qutrit states.

View Article and Find Full Text PDF

One of the many facets of structured light are Ferris wheel/petal beams that can be generated by the addition/superposition of two beams with opposite vorticity/orbital angular momentum (OAM). We demonstrate a simple scheme employing a -shifted Sagnac interferometer (SI) containing a spiral phase plate (SPP) that divides and structures an incoming beam into two azimuthally complementary petal beams representing orthogonal eigenstates. The half-wave plate in the SI can interswitch/route these intensity patterns between the two outputs of the interferometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!