This paper is concerned with the distributed generalized Nash equilibrium (GNE) tracking problem of noncooperative games in dynamic environments, where the cost function and/or the coupled constraint function are time-varying and revealed to each agent after it makes a decision. We first consider the case without coupled constraints and propose a distributed inertial online game (D-IOG) algorithm based on the mirror descent method. The proposed algorithm is capable of tracking Nash equilibrium (NE) through a time-varying communication graph and has the potential of achieving a low average regret. With an appropriate non-increasing stepsize sequence and an inertial parameter, the regrets can grow sublinearly if the deviation of the NE sequence grows sublinearly. Second, the time-varying coupled constraints are further investigated, and a modified D-IOG algorithm for tracking GNE is proposed based on the primal-dual and mirror descent methods. Then, the upper bounds of regrets and constraint violation are derived. Moreover, inertia and two information transmission modes are discussed. Finally, two simulation examples are provided to illustrate the effectiveness of the D-IOG algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0155863 | DOI Listing |
Sensors (Basel)
January 2025
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
In inertial confinement fusion experiments, hot spot mix caused by hydrodynamic instabilities is a critical performance limitation. Currently, multi-channel Ross filter pair imaging is used to quantitatively diagnose the mix mass of cryogenic hot spots driven by 100 kJ energy, but this method brings significant uncertainty. To measure the level of mix more accurately, we have developed a two-temperature model to modify the fitted bremsstrahlung spectra based on the characteristics of cryogenic implosion hot spots.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany.
Anterior cruciate ligament injuries (ACLi) impact football players substantially leading to performance declines and premature career endings. Emerging evidence suggests that ACLi should be viewed not merely as peripheral injuries but as complex conditions with neurophysiological aspects. The objective of the present study was to compare kicking performance and associated cortical activity between injured and healthy players.
View Article and Find Full Text PDFPrehosp Emerg Care
January 2025
Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata, Japan.
Objectives: To compare the effects of powered and manual stretchers on participants' perceived comfort and measured acceleration during lifting and loading operations.
Methods: This non-randomized, laboratory-based crossover study involved forty-one participants (thirty-one firefighters and ten third-year paramedic students) who served as simulated patients experiencing lifting, lowering, loading, and unloading maneuvers using manual and powered stretchers. Four stretcher types were evaluated: one powered stretcher (Power-PRO XT) and three manual stretchers (Matsunaga GT, Exchange 4070, Scad Mate), with each group using the manual stretcher they routinely operated.
Micromachines (Basel)
November 2024
Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
This study investigates the movements of particles in an accelerated toroidal flow channel filled with water, with specific applications for a particle imaging velocimetry gyroscope (PIVG). We used computational fluid dynamics (CFD) to simulate particle behavior under different angular accelerations. These angular accelerations were 4 rad/s, 6 rad/s, and 8 rad/s for particles densities of 1100 kg/m, 1050 kg/m, and 980 kg/m.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!