Extracting the relation between microstructural features and resulting material properties is essential for advancing our fundamental knowledge on the mechanics of cellular metamaterials and to enable the design of novel material systems. Here, we present a unified framework that not only allows the prediction of macroscopic properties but, more importantly, also reveals their connection to key morphological characteristics, as identified by the integration of machine-learning models and interpretability algorithms. We establish the complex manner in which strut orientation can be critical in determining effective stiffness for certain microstructures and highlight cellular metamaterials with counterintuitive material behavior. We further provide a refined version of Maxwell's criteria regarding the rigidity of frame structures and their connection to cellular metamaterials. By examining the shear moduli of these metamaterials, the mean cell compactness emerges as a key morphological feature. The generality of the proposed framework allows its extension to broader classes of architected materials as well as different properties of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575583PMC
http://dx.doi.org/10.1126/sciadv.adi1453DOI Listing

Publication Analysis

Top Keywords

cellular metamaterials
16
framework allows
8
key morphological
8
metamaterials
5
data-driven framework
4
framework structure-property
4
structure-property correlation
4
correlation ordered
4
ordered disordered
4
cellular
4

Similar Publications

In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials.

View Article and Find Full Text PDF

This paper focuses on the theoretical and analytical modeling of a novel seismic isolator termed the Passive Friction Mechanical Metamaterial Seismic Isolator (PFSMBI) system, which is designed for seismic hazard mitigation in multi-story buildings. The PFSMBI system consists of a lattice structure composed of a series of identical small cells interconnected by layers made of viscoelastic materials. The main function of the lattice is to shift the fundamental natural frequency of the building away from the dominant frequency of earthquake excitations by creating low-frequency bandgaps (FBGs) below 20 Hz.

View Article and Find Full Text PDF

Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices.

Adv Mater

January 2025

Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.

Nanoarchitected materials are at the frontier of metamaterial design and have set the benchmark for mechanical performance in several contemporary applications. However, traditional nanoarchitected designs with conventional topologies exhibit poor stress distributions and induce premature nodal failure. Here, using multi-objective Bayesian optimization and two-photon polymerization, optimized carbon nanolattices with an exceptional specific strength of 2.

View Article and Find Full Text PDF

Topological interface states (TISs), known for their distinctive capabilities in manipulating electromagnetic waves, have attracted significant interest. However, in conventional all-dielectric one-dimensional photonic crystal (1DPC) heterostructures, TISs strongly depend on incident angle, which limits their practical applications. Here, we realize an angle-independent TIS in 1DPC heterostructures containing hyperbolic metamaterials (HMMs) for transverse magnetic polarized waves.

View Article and Find Full Text PDF

A Refractive Index-Based Dual-Band Metamaterial Sensor Design and Analysis for Biomedical Sensing Applications.

Sensors (Basel)

January 2025

Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.

We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!