Lipoxygenase (LOX) gene plays an essential role in plant growth, development, and stress response. 15 LOX genes were identified, which were unevenly distributed on chromosomes and divided into three subclasses in this study. In promoter region analysis, many cis-elements were identified in growth and development, abiotic stress response, hormonal response, and light response. qRT-PCR showed that the LOX gene showed tissue specificity in seven tissues, especially XsLOX1, 3, and 7 were relatively highly expressed in roots, stems, and axillary buds. The different expression patterns of LOX genes in response to abiotic stress and hormone treatment indicate that different XsLOX genes have different reactions to these stresses and play diversified roles. This study improves our understanding of the mechanism of LOX regulation in plant growth, development, and stress and lays a foundation for further analysis of biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575502PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292898PLOS

Publication Analysis

Top Keywords

lox genes
12
growth development
12
lipoxygenase lox
8
lox gene
8
plant growth
8
development stress
8
stress response
8
abiotic stress
8
lox
6
response
5

Similar Publications

This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.

View Article and Find Full Text PDF

Cre-Lox miRNA-delivery technology optimized for inducible microRNA and gene-silencing studies in zebrafish.

Nucleic Acids Res

January 2025

Institute for Biomedicine and Glycomics, School of Environment and Science, Griffith University, 46 Don Young Road, Brisbane QLD 4111, Australia., Brisbane, QLD 4111, Australia.

While many genetic tools exist for zebrafish, this animal model still lacks robust gene-silencing and microRNA-delivery technologies enabling spatio-temporal control and traceability. We have recently demonstrated that engineered pri-miR backbones can trigger stable gene knockdown and/or express microRNA(s) of choice in this organism. However, this miRNA-expressing technology presents important limitations.

View Article and Find Full Text PDF

Untargeted metabolomics and functional analyses reveal that the secondary metabolite quinic acid associates with Angelica sinensis flowering.

BMC Plant Biol

January 2025

Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.

View Article and Find Full Text PDF

The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.

View Article and Find Full Text PDF

Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!