The small non-coding RNA miR-34a is a p53-regulated miRNA that acts as a tumour suppressor of colorectal cancer (CRC). Oncogenesis is also negatively influenced by deregulation of the circadian system in many types of tumours with various genetic backgrounds. As the clock gene per2 was recently recognized as one of the target genes of miR-34a, we focused on the miR-34a-mediated influence on the circadian oscillator in CRC cell lines DLD1 and LoVo, which differ in their p53 status. Previously, a sex-dependent association between the expression of per2 and that of miR-34a was demonstrated in CRC patients. Therefore, we also investigated the effect of 17β-estradiol (E2) on miR-34a oncostatic functions. miR-34a mimic caused a pronounced inhibition of per2 expression in both cell lines. Moreover, miR-34a mimic significantly inhibited bmal1 expression in LoVo and rev-erbα expression in DLD1 cells and induced clock gene expression in both cell lines. miR-34a mimic caused a pronounced decrease in sirt1 and cyclin D1 expression, which may be related to the inhibition of proliferation observed after mir-34a administration in DLD1 cells. E2 administration inhibited the migration and proliferation of DLD1 cells. E2 and miR-34a, when administered simultaneously, did not potentiate each other's effects. To conclude, miR-34a strongly influences the expression of components of the circadian oscillator without respect to p53 status and exerts its oncostatic effects via inhibition of sirt1 and cyclin D1 mRNA expression. E2 administration inhibits the growth of DLD1 cells; however, this effect seems to be independent of miR-34a-mediated action. With respect to the possible use of miR-34a in cancer treatment, clock genes can be considered as off-target genes, as changes in their expression induced by miR-34a treatment do not contribute to the oncostatic functions of miR-34a. Possible ambiguous oncogenic characteristics should be taken into consideration in future clinical studies focused on miR-34a.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575541 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292880 | PLOS |
Anticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
Clin Transl Radiat Oncol
March 2025
Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea.
Background: Combining radiotherapy (RT) with immune checkpoint inhibitors (ICIs) is a promising strategy that can enhance the therapeutic efficacy of ICIs. However, little is known about RT-induced changes in the expression of immune checkpoints, such as PD-L1, and their clinical implications in colorectal cancer (CRC). This study aimed to investigate the association between responsiveness to RT and changes in PD-L1 expression in human CRC tissue and cell lines.
View Article and Find Full Text PDFColorectal cancer (CRC) is a prevalent and deadly disease, necessitating the exploration of novel therapeutic strategies. Traditional chemotherapy often encounters drug resistance and adverse side effects, highlighting the need for alternative approaches. , a plant rich in phytochemical constituents, was investigated for its potential as an anticancer agent against colorectal cancer (CRC).
View Article and Find Full Text PDFJ Cancer Prev
December 2024
Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA.
Identifying the roles of genes in cancer is critical in discovering potential genetic therapies for cancer care. Translocon-associated protein delta (TRAPδ), also known as signal sequence receptor 4 (SSR4), is a constituent unit in the TRAP/SSR complex that resides in the endoplasmic reticulum and plays a key role in transporting newly synthesized proteins into the endoplasmic reticulumn. However, its biological role in disease development remains unknown to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!