Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional "trial and error" method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575847 | PMC |
http://dx.doi.org/10.1007/s40820-023-01192-5 | DOI Listing |
Biodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.
Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.
View Article and Find Full Text PDFJ Am Med Inform Assoc
December 2024
AI for Health Institute, Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.
View Article and Find Full Text PDFBiometrics
October 2024
RAND Corporation, Pittsburgh, PA 15213, United States.
Health care decisions are increasingly informed by clinical decision support algorithms, but these algorithms may perpetuate or increase racial and ethnic disparities in access to and quality of health care. Further complicating the problem, clinical data often have missing or poor quality racial and ethnic information, which can lead to misleading assessments of algorithmic bias. We present novel statistical methods that allow for the use of probabilities of racial/ethnic group membership in assessments of algorithm performance and quantify the statistical bias that results from error in these imputed group probabilities.
View Article and Find Full Text PDFIran Biomed J
December 2024
Student Research Committee , Department of Nursing, Khalkhal University of Medical Sciences, Khalkhal, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!