KRAS mutations drive oncogenic alterations in numerous cancers, particularly in human pancreatic ductal adenocarcinoma (PDAC). About 93% of PDACs have KRAS mutations, with G12D (∼42% of cases) and G12V (∼32% of cases) being the most common. The recent approval of sotorasib (AMG510), a small-molecule, covalent, and selective KRASG12C inhibitor, for treating patients with non-small cell lung cancer represents a breakthrough in KRAS targeted therapy. However, there is a need to develop other much-needed KRAS-mutant inhibitors for PDAC therapy. Notably, Mirati Therapeutics recently developed MRTX1133, a small-molecule, noncovalent, and selective KRASG12D inhibitor through extensive structure-based drug design. MRTX1133 has demonstrated potent in vitro and in vivo antitumor efficacy against KRASG12D-mutant cancer cells, especially in PDAC, leading to its recent initiation of a phase I/II clinical trial. Here, we provide a summary of the recent advancements related to the use of MRTX1133 for treating KRASG12D-mutant PDAC, focusing on its efficacy and underlying mechanistic actions. In addition, we discuss potential challenges and future directions for MRTX1133 therapy for PDAC, including overcoming intrinsic and acquired drug resistance, developing effective combination therapies, and improving MRTX1133's oral bioavailability and target spectrum. The promising results obtained from preclinical studies suggest that MRTX1133 could revolutionize the treatment of PDAC, bringing about a paradigm shift in its management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922474PMC
http://dx.doi.org/10.1158/1078-0432.CCR-23-2098DOI Listing

Publication Analysis

Top Keywords

kras mutations
8
mrtx1133
6
pdac
6
small molecule
4
molecule big
4
big impact
4
impact mrtx1133
4
mrtx1133 targets
4
targets krasg12d
4
krasg12d mutation
4

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

The current review delves into the transformative role of precision medicine in addressing Colorectal Cancer [CRC], a pressing global health challenge. It examines closely signalling pathways, genetic and epigenetic modifications, and microsatellite in-stability. The primary focus is on elucidating biomarkers revolutionizing CRC diagnosis and treatment.

View Article and Find Full Text PDF

Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies.

View Article and Find Full Text PDF

Design, Structure Optimization, and Preclinical Characterization of JAB-21822, a Covalent Inhibitor of KRAS.

J Med Chem

January 2025

Chief executive officer, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China.

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutation is commonly found in non-small-cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). Inhibitors that covalently modify the mutated codon 12 cysteine have completed proof-of-concept studies in the clinic. Here, we describe structure-based design and cocrystal-aided drug optimization of a series of compounds with the 1,8-naphthyridine-3-carbonitrile scaffold.

View Article and Find Full Text PDF

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!