The current research work was carried out to simulate monthly streamflow historical record using Soil and Water Assessment Tool (SWAT) and Artificial Neural Network (ANN) at the Astore Basin, Gilgit-Baltistan, Pakistan. The performance of SWAT and ANN models was assessed during calibration (1985-2005) and validation (2006-2010) periods via statistical indicators such as coefficient of determination (R), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and root-mean-square error (RMSE). R, NSE, PBIAS, and RMSE values for SWAT (ANN with Architecture (2,27,1)) models during calibration are 0.80 (0.88), 0.73 (0.82), 15.7 (0.008), and 79.81 (70.34), respectively, while during validation, the corresponding values are 0.71 (0.86), 0.66 (0.95), 17.3 (0.10), and 106.26 (75.92). The results implied that the ANN model is superior to the SWAT model based on the statistical performance indicators. The SWAT results demonstrated an underestimation of the high flow and overestimation of the low flow. Comparatively, the ANN model performed very well in estimating the general and extreme flow conditions. The findings of this research highlighted its potential as a valuable tool for accurate streamflow forecasting and decision-making. The current study recommends that additional machine learning models may be compared with the SWAT model output to improve monthly streamflow predictions in the Astore Basin.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2023.299DOI Listing

Publication Analysis

Top Keywords

swat ann
12
astore basin
12
monthly streamflow
8
ann model
8
swat model
8
ann
6
swat
6
intercomparison swat
4
ann techniques
4
techniques simulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!