Background: When they encounter various highly related postoperative complications, existing risk evaluation tools that focus on single or any complications are inadequate in clinical practice. This seriously hinders complication management because of the lack of a quantitative basis. An interpretable multilabel model framework that predicts multiple complications simultaneously is urgently needed.

Materials And Methods: The authors included 50 325 inpatients from a large multicenter cohort (2014-2017). The authors separated patients from one hospital for external validation and randomly split the remaining patients into training and internal validation sets. A MARKov-EmbeDded (MARKED) multilabel model was proposed, and three models were trained for comparison: binary relevance, a fully connected network (FULLNET), and a deep neural network. Performance was mainly evaluated using the area under the receiver operating characteristic curve (AUC). The authors interpreted the model using Shapley Additive Explanations. Complication-specific risk and risk source inference were provided at the individual level.

Results: There were 26 292, 6574, and 17 459 inpatients in the training, internal validation, and external validation sets, respectively. For the external validation set, MARKED achieved the highest average AUC (0.818, 95% CI: 0.771-0.864) across eight outcomes [compared with binary relevance, 0.799 (0.748-0.849), FULLNET, 0.806 (0.756-0.856), and deep neural network, 0.815 (0.765-0.866)]. Specifically, the AUCs of MARKED were above 0.9 for cardiac complications [0.927 (0.894-0.960)], neurological complications [0.905 (0.870-0.941)], and mortality [0.902 (0.867-0.937)]. Serum albumin, surgical specialties, emergency case, American Society of Anesthesiologists score, age, and sex were the six most important preoperative variables. The interaction between complications contributed more than the preoperative variables, and formed a hierarchical chain of risk factors, mild complications, and severe complications.

Conclusion: The authors demonstrated the advantage of MARKED in terms of performance and interpretability. The authors expect that the identification of high-risk patients and the inference of the risk source for specific complications will be valuable for clinical decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793770PMC
http://dx.doi.org/10.1097/JS9.0000000000000817DOI Listing

Publication Analysis

Top Keywords

multilabel model
12
external validation
12
complications
9
postoperative complications
8
training internal
8
internal validation
8
validation sets
8
binary relevance
8
deep neural
8
neural network
8

Similar Publications

RNA-ModX: a multilabel prediction and interpretation framework for RNA modifications.

Brief Bioinform

November 2024

In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, 110, Taipei, Taiwan.

Accurate prediction of RNA modifications holds profound implications for elucidating RNA function and mechanism, with potential applications in drug development. Here, the RNA-ModX presents a highly precise predictive model designed to forecast post-transcriptional RNA modifications, complemented by a user-friendly web application tailored for seamless utilization by future researchers. To achieve exceptional accuracy, the RNA-ModX systematically explored a range of machine learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit, and Transformer-based architectures.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a significant global health challenge, necessitating advanced predictive models to support clinical decision-making. In this study, we explore multi-label classification as a novel approach to predict antibiotic resistance across four clinically relevant bacteria: E. coli, S.

View Article and Find Full Text PDF

Background: The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this.

View Article and Find Full Text PDF

An automatic system for pathology classification in chest X-ray scans needs more than predictive performance, since providing explanations is deemed essential for fostering end-user trust, improving decision-making, and regulatory compliance. CLARE-XR is a novel methodology that, when presented with an X-ray image, identifies the associated pathologies and provides explanations based on the presentation of similar cases. The diagnosis is achieved using a regression model that maps an image into a 2D latent space containing the reference coordinates of all findings.

View Article and Find Full Text PDF

A zero-shot attribute-embedded model with a feature difference mapping sigmoid function for compound fault diagnosis of rotating machinery.

ISA Trans

December 2024

State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044, PR China. Electronic address:

Article Synopsis
  • Current methods for detecting machinery compound faults struggle due to the lack of available training data, as collecting sufficient compound fault samples is often impractical in engineering.
  • The paper introduces a zero-shot attribute-embedded model (ZSAECFD), which allows for diagnosing unseen compound faults using only single fault data by constructing attribute prototypes and utilizing a new activation function, F-sigmoid.
  • The model demonstrates high diagnostic accuracy—81.82% for bearing faults and 88.17% for gear faults—showing its effectiveness compared to traditional methods, even without training on compound fault data.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!