Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572188PMC
http://dx.doi.org/10.3390/cells12192411DOI Listing

Publication Analysis

Top Keywords

embryonic thrombopoiesis
12
definitive hematopoiesis
8
multiphoton vivo
4
vivo microscopy
4
microscopy embryonic
4
thrombopoiesis
4
thrombopoiesis reveals
4
reveals generation
4
generation platelets
4
platelets budding
4

Similar Publications

Highly efficient generation of mature megakaryocytes and functional platelets from human embryonic stem cells.

Stem Cell Res Ther

November 2024

Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.

Article Synopsis
  • Platelet transfusion therapy has advanced significantly, and the generation of functional platelets from human embryonic stem cells (hESCs) presents new possibilities, but challenges remain in efficiently producing these platelets.* -
  • Researchers developed a method that uses hypoxic conditions and a specific combination of cytokines to effectively differentiate hESCs into mature megakaryocytes (MKs) and functional platelets, demonstrating strong maturation and functionality through various analyses.* -
  • The study found that under the new 3D differentiation conditions, a high percentage of MKs and platelets showed the desired markers and functionality, with the generated hESC-derived platelets successfully restoring normal clotting in mouse models of thrombocytopenia.*
View Article and Find Full Text PDF

Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter ().

View Article and Find Full Text PDF

Augmented Production of Platelets From Cord Blood With Euchromatic Histone Lysine Methyltransferase Inhibition.

Stem Cells Transl Med

September 2022

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China.

Cord blood hematopoietic stem/progenitor cells (CB-HSPCs) have emerged as a promising supply for functional platelets to potentially alleviate the increasing demand for platelet transfusions, but the clinical application has been limited by the undefined molecular mechanism and insufficient platelet production. Here, we performed single-cell profiling of more than 16 160 cells to construct a dynamic molecular landscape of human megakaryopoiesis from CB-HSPCs, enabling us to uncover, for the first time, cellular heterogeneity and unique features of neonatal megakaryocytes (MKs) and to also offer unique resources for the scientific community. By using this model, we defined the genetic programs underlying the differentiation process from megakaryocyte-erythroid progenitors (MEPs) to MKs via megakaryocyte progenitors (MKPs) and identified inhibitors of euchromatic histone lysine methyltransferase (EHMT), which, when applied at the early stage of differentiation, significantly increase the final platelet production.

View Article and Find Full Text PDF

Fetal and neonatal megakaryocyte progenitors are hyperproliferative compared with adult progenitors and generate a large number of small, low-ploidy megakaryocytes. Historically, these developmental differences have been interpreted as "immaturity." However, more recent studies have demonstrated that the small, low-ploidy fetal and neonatal megakaryocytes have all the characteristics of adult polyploid megakaryocytes, including the presence of granules, a well-developed demarcation membrane system, and proplatelet formation.

View Article and Find Full Text PDF

An Outline of the Outset of Thrombopoiesis in Human Embryos At Last.

Cell Stem Cell

March 2021

Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA; Myeloproliferative Disorders Research Consortium, New York, NY, USA. Electronic address:

By single-cell transcriptome profiling of human yolk sacs and fetal livers, Wang et al. (2021) (in this issue of Cell Stem Cell) track two alternative routes for differentiation of megakaryocytes. The authors have shown that these megakaryocytes have hemostatic- and HSC-supporting functions, and that hESC-derived thrombospondin1-positive endothelial cells are capable of generating megakaryocytes in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!