A cell's mechanical properties have been linked to cancer development, motility and metastasis and are therefore an attractive target as a universal, reliable cancer marker. For example, it has been widely published that cancer cells show a lower Young's modulus than their non-cancerous counterparts. Furthermore, the effect of anti-cancer drugs on cellular mechanics may offer a new insight into secondary mechanisms of action and drug efficiency. Scanning ion conductance microscopy (SICM) offers a nanoscale resolution, non-contact method of nanomechanical data acquisition. In this study, we used SICM to measure the nanomechanical properties of melanoma cell lines from different stages with increasing metastatic ability. Young's modulus changes following treatment with the anti-cancer drugs paclitaxel, cisplatin and dacarbazine were also measured, offering a novel perspective through the use of continuous scan mode SICM. We found that Young's modulus was inversely correlated to metastatic ability in melanoma cell lines from radial growth, vertical growth and metastatic phases. However, Young's modulus was found to be highly variable between cells and cell lines. For example, the highly metastatic cell line A375M was found to have a significantly higher Young's modulus, and this was attributed to a higher level of F-actin. Furthermore, our data following nanomechanical changes after 24 hour anti-cancer drug treatment showed that paclitaxel and cisplatin treatment significantly increased Young's modulus, attributed to an increase in microtubules. Treatment with dacarbazine saw a decrease in Young's modulus with a significantly lower F-actin corrected total cell fluorescence. Our data offer a new perspective on nanomechanical changes following drug treatment, which may be an overlooked effect. This work also highlights variations in cell nanomechanical properties between previous studies, cancer cell lines and cancer types and questions the usefulness of using nanomechanics as a diagnostic or prognostic tool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571876 | PMC |
http://dx.doi.org/10.3390/cells12192401 | DOI Listing |
Nano Lett
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing 100193, P. R. China.
Saturated sp-carbon nanothreads (CNTh) have garnered significant interest due to their predicted high Young's modulus and thermal conductivity. While the incorporation of heteroatoms into the central ring has been shown to influence the formation of CNTh and yield chemically homogeneous products, the impact of pendant groups on the polymerization process remains underexplored. In this study, we investigate the pressure-induced polymerization of phenol, revealing two phase transitions occurring below 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Türkiye.
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.
Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.
Nanomaterials (Basel)
December 2024
Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China.
HOP-graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP-graphene, utilizing molecular dynamics simulations. The results revealed that Young's modulus of HOP-graphene in the armchair direction is 21.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China Normal University, Dept. of Chemistry, Dongchuan Road 500, 200062, Shanghai, CHINA.
Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg2+ and Ca2+, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg2+ and Ca2+ in vivo up to 90 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!